Integration of rainfall thresholds and field monitoring data : Case studies from Japan and India

Italy-Japan joint workshop on landslide monitoring systems and related topics

Dr. Neelima Satyam Associate Professor Department of Civil Engineering IIT Indore JSPS Fellow, University of Tokyo, Japan

4th -5th November 2021

(online)

Dr. L. Wang Senior Manager of Technology Center, Chuo Kaihatsu Corporation, Japan

Overview

- Introduction
- Details of monitoring system
- Case studies from Japan
- Case study from India
- Integration of field monitoring data and rainfall thresholds

Introduction

- The damages instigated by landslides in the recent past call for attention from authorities for disaster risk reduction measures.
- Real time field monitoring of unstable slopes to understand the insitu conditions and provide landslide early warning.
- IoT based system- data transfer and alarms in real time.
- Micro-electro-mechanical systems (MEMS)-based tilt sensors and volumetric water content sensors
- Case studies from: Fukuoka prefecture, (Japan) and Chibo, (Darjeeling Himalayas, India).

WIRELESS SENSOR SYSTEM Developed at University of Tokyo, Japan

The Principle of Early Warning

The tilting rate as a function of time before slope failure (or stabilization) for several case studies

6

Case studies from Japan Slope failure 1: along a highway in Fukuoka Prefecture, Japan

Italy-Japan joint workshop

(Uchimura et al , S&F, 2019)

Tilting angle and volumetric water content obtained by sensor unit 2 on the slope site along highway just before the second failure

Italy-Japan joint workshop

Slope failure 2: along a highway in Fukuoka Prefecture, Japan

Comparison between data from extensioneter (S-1 and S-2) and surface tilt sensor (K-3).

11

Case study from India: LANDSLIDE FORECASTING APROACHES/MODELS

LOCATION OF CHIBO PASHYAR

KALIMPONG Italy-Japan joint workshop

Landslide problem : Chibo/ Pashyor villages on the West Face of Kalimpong Chandra Lok Army Married accommodation Army cantonment ALL STREET Happy Villa RRT Aanoal dara Raja jhora Chibo school jhora Ghatey jhora Magar jhora Approach road toKalimpong (15kms) Chitrey Name / Name Landmarks on west face NH31A To Gangto TEESTA RIVER VALLEY

Jhoras affecting Chibo-Pashyar

Land Use/LandCover Map of Kalimpong (Sourse: NRSC Hyd)

Typical stratigraphy of the study area (Acharyya, 1968)

Italy-Japan joint workshop

Drainage map of the Kalimpong town

(Not to Scale)

The water during the monsoon is augmented by huge amounts of surface runoff because of reduction in ground seepage

(a) Damage to culvert

(b) Damaged road along NH 31A

Observed damages during field visit (Dikshit and Satyam, IIS, 2018)

Italy-Japan joint workshop

(d) Mudflows and Debris

(c) Damage to house

Landslide damages at Chibo Pashyar

Italy-Japan joint workshop

NETWORK OF WIRELESS SENSOR SYSTEM INSTALLED AT CHIBO PASHYAR

Italy-Japan joint workshop

Elevation Profile of installed sensors

Italy-Japan joint workshop

Instrumentation at Chibo Pashyar

- 6 Tilt Sensors and 1 Data Logger were installed at in the study area.
- The sensor locations were decided based on GSI inputs (across OC & Pyraeni jhora), local people and slope stability analysis

Data Logger : 27.0504, 88.4542 Sensor 1: 27.0527, 88.4559 Sensor 2: 27.0524,88.4550 Sensor 3: 27.0535, 88.4560 Sensor 4: 27.0502, 88.4525 Sensor 5: 27.0495, 88.4501 Sensor 6: 27.0504, 88.4540

Data Logger (27.0504, 88.4542)

Tilt Sensor 1 TS1704011 (27.0502, 88.4525)

Tilt Sensor 2 TS1704015 (27.0495, 88.4501)

Tilt Sensor 3 TS1704016 (27.0527, 88.4559)

Tilt Sensor 4 TS1704019 (27.0504, 88.4540) Tilt Sensor 5 TS1704017 (27.0535, 88.4560) Italy-Japan joint workshop Tilt Sensor 6 TS1704014 (27.0524,88.4550)

21

The data is available at : <u>http://114.179.7.237/in001_kalimpong/index.aspx</u>

	Z-GHMV eological haz	VS zard monite	oring and	early	warning	syster	n				Cł	nange Pwd	Logout	
Home page	Site mana	gement	Data viewing							Current user: gu	uest Date:2017,	/06/19		
Custom data viewir	ng													
Hazard area :	Kalimpong	TS1704014	151	704016	TS17	704017	TS170	14019						The data contains parameters
Monitoring site :	TS1704011	TS1704015	- 101				_ 10110				1701015 5 11			
Rainfall type :		ngle of inclination(*) Period of tim	e: 2017-06-15	is angle of incl	lination(*) = TS	9	me water conte	nt (%) 🗆 TS endline	1704015:Temp View	Export	1704015:Battery	voltage (V)		X-axis angle of inclination(°)
Graphic display	ist display													Y-axis angle of inclination(°)
X-axis angle of inclin . .00- .0-														Volume water content (%) Temperature (°C) Battery voltage (V)
1	20 2017-06-15 07:10:0	17-06-15 14:50:09 9 2017-06-1	2017-06-16 0 5 22:10:09	05:50:09 2017-06-16	2017-06-1 6 14:20:09	6 23:00:09 2017-06-	2017-06- 17 07:10:09	17 16:10:09 2017-	201 -06-18 00:40:09	7-06-18 08:20:09				
.0 .0- .0-	6 2 2 6													
ie, ∪. ≻	2017-06-15 07:10:0	17-06-15 14:50:09 9 2017-06-1	2017-06-16 0 5 22:10:09	05:50:09 2017-06-10	2017-06-1 6 14:20:09	6 23:00:09 2017-06-	2017-06- 17 07:10:09	17 16:10:09 2017-	201 -06-18 00:40:09	7-06-18 08:20:09				

Italy-Japan joint workshop

÷

Time History of monitored items

Italy-Japan joint workshop Time history of daily and cumulative rainfall for the study period (Abraham et al, Sensors, 2020)

Time history of volumetric water content

Italy-Japan joint workshop

(Abraham et al, Sensors, 2020)

Time history of tilt angles by surface tilt sensors

Tilting in slope direction

Tilting in horizontal direction

Italy-Japan joint workshop

(Abraham et al, Sensors, 2020)

Time history of tilt angles by surface tilt sensors

Detailed description of displacement in 2017

Tilting in slope direction

Tilting in horizontal direction

2017: Variations in angle of inclination Tilt Sensor 2 from the start of subsidence (23/07/17-12/08/17)

Needs a precaution if Tilt rate of 0.01 deg/hr

Italy-Japan joint workshop

Variations in angle of inclination and moisture content in Tilt Sensor 3 from the start of subsidence

Italy-Japan joint workshop

Comparative analysis of volumetric water content from the start of subsidence

Tilt sensor 2

Tilt Sensor 3

Field observations at the ground near Tilt Sensor 2

At tilt Sensor 2 near Pyarieni Jhora , subsidence during 2017 monsoon

Italy-Japan joint workshop

Observations for TS 2 (Pyarieni Jhora)

The soil present near Pyarieni Jhora are mainly silty clay (low PI) with moderately thick forest and cardamom plantation (GSI Report, 2017).

Seepage has been observed at various locations both within the old slide debris. It has been observed that the surface runoff along the streamlets is entering the old slide debris and causes oversaturation.

Slope instability is caused by active toe erosion on either bank of Pyarieni Jhora and the evidence is indicated by the subsidence (as shown in Figs in last slide).

On 24/07/2017 rainfall event lasted for 5 hours with a tilt angle variation at 0.008 deg/hr, however after 5 hours of rainfall, the tilt variation increased to 0.012 deg/hr which emphasizes the importance of infiltration. Similar observation was recorded on 12/08/2017 after 4 hours of rainfall.

Italy-Japan joint workshop

Subsidence at TS 3

Intense slope instability in the form of slide and subsidence has been observed along both the banks of the OC Jhora.

Slope instability is mainly restricted along the jhora; subsidence of the road indicates removal of finer materials by seepage of water.

Aug, 2017

Italy-Japan joint workshop

Variation in event rainfall and the tilting rate for various displacement periods

			3-day	5-day	7-day	10-day		
	Event Rainfall	Max. Intensity	antecedent	antecedent	antecedent	antecedent	X tilting rate	Y tilting
Season	(mm)	(mm/h)	(mm)	(mm)	(mm)	(mm)	(°/h)	rate (°/h)
2017 - 1	222.6	25.4	120	142.64	144.34	269.83	0.016	0.012
2017 - 2	109.65	17.8	64.2	146.9	155.6	208.6	0.08	0.01
2018 - 1	24	5	9.4	11.1	15.2	21.4	0.03	0.015
2018 - 2	24	4	3.1	6.7	8.2	15.1	0.05	0.02
2019-1	452.5	3.96	210	210	217.5	230.5	0.057	0.21

Italy-Japan joint workshop

(Abraham et al, Sensors, 2020)

1. Using antecedent moisture content

Italy-Japan joint workshop

- SHETRAN Hydrological model to simulate drainage pathways and processes in river basins, which is being used extensively.
- The partial differential equations governing water flow are solved using the spatially distributed input data.
- The input data is in the form of a three dimensional grid, formed using the digital elevation model (DEM).

Parameters	Calibrated value	
Strickler overland flow coefficient	$0.50 \text{ m}^{1/3} \text{s}^{-1}$	
Maximum Rooting Depth	1.6 m	
AE/PE at field capacity	1	
Canopy storage	5 mm	
Saturated water content	0.40	
Saturated hydraulic conductivity	1.14 m/day	
vanGenuchten-n	1.17	
Residual water content	0.08	
Leaf Area Index	1	
vanGenuchten- alpha	0.03 cm ⁻¹	(A)

Abraham et al, Water, 2020)

1. Using antecedent moisture content

Integration with statistical thresholds – using Bayesian approach

$$P(A|B,C) = \frac{P(B,C|A) * P(A)}{P(B,C)}$$

The maximum probability of 1 was obtained in three cases:

- a) the rainfall severity greater than T_{50} and the soil wetness between 0.4 and 0.6
- b) the rainfall severity between T_{20} and T_{50} and the soil wetness between 0.6 and 0.8
- c) the rainfall severity event between T_5 and T_{10} and the soil wetness between 0.6 and 0.8

2. Using field based monitoring data

The data from three sensors placed near Pyarieni jhora were used for the analysis

slope, and (b) tilting angle in the direction perpen-dicular to slope

Italy-Japan joint workshop

(Abraham et al , Water, 2021)

2. Using field based monitoring data

Integration with empirical thresholds – using algorithm based approach

Statistical Attributes	ED + Tilt	ED only	Tilt only
True positives	66	50	86
False positives	63	118	273
False negatives	32	48	12
True negatives	997	942	787
Efficiency	0.92	0.86	0.75
Specificity	0.94	0.89	0.74
Sensitivity	0.67	0.51	0.88
Likelihood ratio	11.33	4.58	3.41

Italy-Japan joint workshop

(Abraham et al , Water, 2021)

3. Using field based monitoring data

Integration with SIGMA model – using algorithm based approach

Statistical	SIGMA +	SIGMA
Attributes	Tilt	only
True positives	88	88
False positives	38	70
False negatives	34	34
True negatives	1028	996
Efficiency	0.94	0.91
Specificity	0.96	0.93
Sensitivity	0.72	0.72
Likelihood ratio	20.23	10.98

THANK YOU