

Innovative characterization and monitoring solutions for rockfall prone areas

Giordan Daniele

CNR IRPI - Geohazard Monitoring Group

Outline

UAV LANDSLIDES INVESTIGATION WORKFLOW

Giordan D. Manconi A., Tannant D., Allasia P. 2015 UAV: low-cost remote sensing for high-resolution investigation of landslides. Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, 5344-5347.

ROCK FACE 2

20 METERS

N-E

WORKFLOW FOR FRACTURED ROCK SLOPE ANALYSIS

ULTRA-HIGH RESOLUTION RPAS ACQUISITION

STRUCTURE FROM MOTION

MANUAL DISCONTINUITY ANALYSIS

SLOPE STABILITY EVALUATION (ROKA ALGHORITM)

Mean resolution 5 mm/pixel

BEDDING

BEDDING + JOINTS

ROCK FACE 1:

Width: 30 m Height: 60 m

192 joints + bedding measures

Width: 100 m Height: 80 m

908 joints/bedding measures

The use of DOM is useful for a correct identification and interpretation of joints

Markland tests for the identification of critical joints combinations

3D ROck Slope Kinematic Analysis (ROKA)

The open source ROKA code is able to detect critical joints combinations using a mobile window that checks all the possible discontinuity combinations according to Markland test

Menegoni N, Giordan D, Perotti C 2021 An Open-Source Algorithm for 3D ROck Slope Kinematic Analysis (ROKA). Applied Sciences, 11,1698

Gallivaggio rockfall (may 31, 2018)

GEOHAZARD MONITORING GROUP

Menegoni N, Giordan D, Perotti C 2020. Reliability and Uncertainties of the Analysis of an Unstable Rock Slope Performed on RPAS Digital Outcrop Models: the Case of the Gallivaggio Landslide (Western Alps, Italy). Remote Sensing. 12(10), 1635

Courtesy Prof. G. Crosta

Gallivaggio rockfall (may 31, 2018)

WORKFLOW FOR ROCKFALL VOLUME ESTIMATION

ULTRA-HIGH RESOLUTION RPAS ACQUISITION

STRUCTURE FROM MOTION

MANUAL DISCONTINUITY ANALYSIS

ROCKFALL VOLUME ESTIMATION

(a) before (April 17th 2018) and (b) after (May 30th 2018) the landslide

Menegoni N, Giordan D, Perotti C 2020. Reliability and Uncertainties of the Analysis of an Unstable Rock Slope Performed on RPAS Digital Outcrop Models: the Case of the Gallivaggio Landslide (Western Alps, Italy). Remote Sensing. 12(10), 1635

The estimated volume of the potentially unstable rock block was 8240 m³

The volume of the fallen rock mass thus calculated was of ca 6730 m³.

The volume of the lateral block still unstable is about 809 m³.

The difference between the estimated and the real landslide volume is reduced to about 701 m^3 (~ 10% of the real collapsed volume).

The difference of the volume of the landslide calculated in the direct-referenced and GCP-referenced models (6730 m³ vs 6864 m³; ca. 1.7%).

The problem of the acquisition of Ground Control Points!

Menegoni N, Giordan D, Perotti C 2020. Reliability and Uncertainties of the Analysis of an Unstable Rock Slope Performed on RPAS Digital Outcrop Models: the Case of the Gallivaggio Landslide (Western Alps, Italy). Remote Sensing. 12(10), 1635

Villanova di Accumoli is one of the most damaged town by the seismic sequence that hit the central part of Italy in the second half of 2016. The town was strongly damaged by the earthquake sequence and the area was also affected by the activation of several slope instabilities. Rock falls represented one of the most frequent instabilities that threatened in particular the viability and contributed to the loss of road connection in this mountainous area.

Villanova di Accumoli earthquake induced rockfall

WORKFLOW FOR ROCKFALL RISK ASSESSMENT

ULTRA-HIGH RESOLUTION RPAS ACQUISITION

STRUCTURE FROM MOTION

IDENTIFICATION OF SOURCE AREAS AND FALLEN BLOCKS

ROCKFALL TRAJECTORIES MODELLING

In particular, the provincial road SP18 near Villanova di Accumoli was closed due to a 1 m³ rock block that fell down from the slope and crossed the SP18, partially damaging it. During the emergency, it was decided to apply a numerical model to estimate the trajectories of the remaining instable rock masses and to define the possible places where to set up protection measures to safely re-open the road. Therefore, a survey with a multicopter was carried out to obtain (i) an accurate DSM of the source area and the slope (ii) the identification and characterization of other unstable blocks possibly not reachable in the field.

STEP 1 OPTICAL RPAS ACQUISITION OF THE STUDIED AREA

The 6,500 m² area was covered by a total 161 photograms by a 34 Mpixel camera, obtaining a 1.5 cm/pixel Ground Sampling Distance (GSD).

Santangelo M., Alvioli M., Baldo M., Cardinali M., Giordan D., Guzzetti F., Marchesini I., Reichenbach P. 2019. Brief communication: Remotely piloted aircraft systems for rapid emergency response: road exposure to rockfall in Villanova di Accumoli (central Italy) Nat. Hazards Earth System Science. Sci. 19, 325-335

STEP 2 STRUCTURE FROM MOTION RESULT: ORTOPHOTO

The final orthophoto has a resolution of 2.5 cm, whereas the DSM has a resolution of 20 cm.

STEP 4 GPS RTK ACQUISITION IN THE MOST VEGETATED AREAS

In the area covered by dense vegetation (the lower part of the slope) the DSM could not be manually filtered, which hampered to run the numerical model. This problem was addressed by carrying out a GPS RTK survey of the most vegetated area. A total of 73 points with less than 1m error were acquired and integrated in the DTM. The resulting integrated DTM has a resolution of 25 cm

STEP 5 ROCK FALLS SOURCE AREA RECOGNITION

The numerical model STONE was then applied to the source areas mapped by photo-interpretation of the RPAS orthophoto and by a morphometric threshold.

STEP 6 NUMERICAL MODEL FOR POTENTIAL ROCK FALLS TRAJECTORIES

STONE model produced a 1m raster showing the potential trajectories of the mapped instable rock masses. Results showed that only the part of the road hit by the rockfall was actually exposed to rockfall trajectories. Therefore only limited protection measures were suggested to reduce the exposition of the road.

Rockfall vs monitoring approaches

LASMON SMART NETWORK

Landslide Smart Monitoring Network

Dynamic rockfalls barriers monitoirng

LASMON

Landslide Smart Monitoring Network

SMART NETWORK

SMART NETWORK

LASMON Landslide Smart Monitoring Network

								_		
										Ac
	LA	SMON - Landslide Smart Monitoring Network							6	
Grafici Tabella Documenti									5	
Tipologia di Accelerometri	N°	N° Data Accelerazione [g]								
Codice : PMT_ACC_R01-M05	39 2	9/01/2019 12:40:00							4 Kione	
Prima lettura : 07/12/2018 Ultima lettura : 19/03/2019 15:00:00	40 2	9/01/2019 13:00:00							3	
Seleziona i parametri di ricerca Sensore Accelerazione [g] ▼	41 29/01/2019 13:20:00								00 2	
Data dal 29/01/2019 al 01/02/2019	42 2	29/01/2019 13:24:15			2.500				1	
(gg/mm/aaaa)	43 2	9/01/2019 13:24:45							nt	
Comandi	44 2	9/01/2019 13:40:00							19	010
Applica Default Stampa	45 2	9/01/2019 14:00:00							2420	01/20
Scarica file MS-Excel CSV	46 2	9/01/2019 14:20:00							26/	27/4
Scarica file MS-Excel CSV dati grezzi	47 0									
								Tra	asduttore	di posizione
LASMON - Landslide Smart Monitoring Network									100	
Grafici Tabella Documenti									÷	
Tipologia di Trasduttore di posizione	N°	Data		Spostamento [mm]		Temperatura [°C]		ľ	50	
strumento : (encoder incrementale) Codice : PMT_CRD_R01-M05_C04	251	29/01/2019 11:28:15		0.000		12.570		lot		
Prima lettura : 07/12/2018 00:06:12 Ultima lettura : 19/03/2019 14:47:58	252	29/01/2019 11:48:15		0.000		11.400		tame		
Seleziona i parametri di ricerca	253	29/01/2019 12:08:15		0.000		10.730		Spos	50	
Data dal 26/01/2019 al 01/02/2019	254	29/01/2019 12:28:15		0.000		10.140	7		-50	
(gg/MM/aaaa)	255	29/01/2019 12:48:15		0.000		9.250			-100	
Comandi Applica Default Stampa	256	29/01/2019 13:08:15		0.000		9.130	/		019	619
Scarica file MS-Excel CSV	257	29/01/2019 13:24:17		50.000		9,210			012	210
Scarica file MS-Excel CSV dati grezzi	258	29/01/2019 13:24:27		50.000		9 210	1		58	27
	200	and an and a state that								
								Tra	asduttore	di posizione
		LASMON - Landslide Smart Monitoring Ne	twor	k					100	
Grafici Tabella Documenti								_	- 50	
Tipologia di Trasduttore di posizione	Nº	Data		Spostamento [mm]		Temperatura [ºC]		E L	50	
Codice : PMT_CRD_R01-M05_C05	251	29/01/2019 11:28:15		0.000		12.570		ento		
Ultima lettura : 07/12/2018 00:06:12 Ultima lettura : 19/03/2019 14:47:58	252	29/01/2019 11:48:15		0.000		11.400		stam		
Seleziona i parametri di ricerca Sensore Tutti V	253	29/01/2019 12:08:15		0.000	0	10.730		Spo	-50	
Data dal 26/01/2019 al 01/02/2019	254	29/01/2019 12:28:15		0.000		10.140				
(gg/MM/aaaa)	255	29/01/2019 12:48:15		0.000	0	9.250			-100	
Applica Default Stampa	256	29/01/2019 13:08:15		0.000	0	9.130			2019	2019
Scarica file MS-Excel CSV	257	29/01/2019 13:24:17		50.000		9.210			601/	110/23
Scarica file MS-Excel CSV dati grezzi	258	29/01/2019 13:24:27		50.000		9.210			UN	CN CN
			-		-			_		

Trasduttore di posizione (encoder incremen ale) : PMT_CRD_R01-M05_C04

Conclusion

The use of recent innovative solutions can be an useful support for the management of rockfall prone areas

UAV can be considered one of the most powerful systems for the creation of ultra high-resolution digital outcrop models and DSMs of studied areas

UAV can be used on demand even in dangerous areas without a direct access to the most critical sectors

On the other hand, the use of SMART NETWORK can be a great solution for the creation of complex monitoring network that can control many phisical parameters but also the integrity of rockfall protection active and passive infrastructures

Thank you for your attention

http://gmg.irpi.cnr.it

