Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models

Cavalli, Marco; Goldin, Beatrice; Comiti, Francesco; Brardinoni, Francesco; Marchi, Lorenzo, 2017, Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models, Geomorphology (Amst.) 291 (2017): 4–16. doi_10.1016/j.geomorph.2016.04.009,
URL: http://www.cnr.it/prodotto/i/355230

Digital elevation models (DEMs) built from repeated topographic surveys permit producing DEM of Difference (DoD) that enables assessment of elevation variations and estimation of volumetric changes through time. In the framework of sediment transport studies, DEM differencing enables quantitative and spatially-distributed representation of erosion and deposition within the analyzed time window, at both the channel reach and the catchment scale. In this study, two high-resolution Digital Terrain Models (DTMs) derived from airborne LiDAR data (2. m resolution) acquired in 2005 and 2011 were used to characterize the topographic variations caused by sediment erosion, transport and deposition in two adjacent mountain basins (Gadria and Strimm, Vinschgau - Venosta valley, Eastern Alps, Italy). These catchments were chosen for their contrasting morphology and because they feature different types and intensity of sediment transfer processes. A method based on fuzzy logic, which takes into account spatially variable DTMs uncertainty, was used to derive the DoD of the study area. Volumes of erosion and deposition calculated from the DoD were then compared with post-event field surveys to test the consistency of two independent estimates. Results show an overall agreement between the estimates, with differences due to the intrinsic approximations of the two approaches. The consistency of DoD with post-event estimates encourages the integration of these two methods, whose combined application may permit to overcome the intrinsic limitations of the two estimations. The comparison between 2005 and 2011 DTMs allowed to investigate the relationships between topographic changes and geomorphometric parameters expressing the role of topography on sediment erosion and deposition (i.e., slope and contributing area) and describing the morphology influenced by debris flows and fluvial processes (i.e., curvature). Erosion and deposition relations in the slope-area space display substantial differences between the Gadria and the Strimm basins. While in the former erosion and deposition clusters are reasonably well discriminated, in the latter, characterized by a complex stepped structure, we observe substantial overlapping. Erosion mostly occurred in areas that show persistency of concavity or transformation from convex and flat to concave surfaces, whereas deposition prevailingly took place on convex morphologies. Less expected correspondences between curvature and topographic changes can be explained by the variable sediment transport processes, which are often characterized by alternation of erosion and deposition between different events and even during the same event.

Data from https://intranet.cnr.it/people/