Analysis of ground deformation using SBAS-DInSAR technique applied to COSMO-SkyMed images, the test case of Roma urban area

Ardizzone F., Bonano, M., Giocoli, A., Lanari R., Marsella,M., Pepe A., Perrone A., Piscitelli S., Scifoni S., Scutti M., Solaro G., 2012, Analysis of ground deformation using SBAS-DInSAR technique applied to COSMO-SkyMed images, the test case of Roma urban area, SAR Image Analysis, Modeling, and Techniques XII. SPIE, Remote Sensing., pp. Art. N 85360D, Edimburgo,United Kingdom, 24-27 settmbre 2012,
URL: http://www.cnr.it/prodotto/i/192307

Differential Synthetic Aperture Radar Interferometry (DInSAR) represents a well-established remote sensing technique for the investigation of ground deformation phenomena. Among the DInSAR techniques, the Small BAseline Subset (SBAS) approach exploits ground surface at two mapping scales, low and high resolution, and allows the detection and monitoring of local deformation processes that may affect single buildings or man-made structures in urban areas. This work investigates the capability improvement of the SBAS-DInSAR technique to analyse deformation processes in urban areas by exploiting SAR data acquired by the Cosmo-SkyMed (CSM) constellation in comparison with the results obtained from data of first generation ERS/ENVISAT radar systems of he European Space Agency. In particular, we extracted mean deformation velocity maps as seen by the three different radar systems and, for each coherent pixel, we retrieved the corresponding displacement time series. Our analysis was focused on the Torrino area where independent studies had already revealed significant deformation signals testified by the serious damages on many buildings in the area. Moreover, in order to understand the causes of the CSM observed displacement rates, reaching few cm per year, we also performed a comparative analysis between DInSAR products and independent information derived from electrical resistivity tomography data and geological maps.

Data from https://intranet.cnr.it/people/