Sediment connectivity changes in an Andean catchment affected by volcanic eruption

Martini L., Picco L. ,Iroumé A., Cavalli M., 2019, Sediment connectivity changes in an Andean catchment affected by volcanic eruption, Science of the total environment 692 (2019): 1209–1222. doi_10.1016/j.scitotenv.2019.07.303,
URL: http://www.cnr.it/prodotto/i/405265

River systems are continuously affected by multiple natural and anthropogenic phenomena. Among major natural disturbances, volcanic eruptions have the capability to overthrow the forms and to modify dramatically the morphological setting and sediment connectivity of the system. Moreover, the input of sediments in the channel network can lead to active channel widening, bed aggradation and river scouring, which in turn may affect downstream human settlements. In this context, the present research aims to investigate sediment connectivity by means of a geomorphometric index in a catchment affected by an explosive volcanic eruption in order to assess its variation before and after the disturbance. We developed a workflow exploiting the use of open source data (i.e., Global Digital Elevation Models, satellite imagery) to represent the impedance to the sediment fluxes and to apply the Index of Connectivity (IC) in this context characterized by the lack of high-resolution topographic data. The study area is the Blanco River basin, southern Chile, which was heavily affected by the eruption of Chaitén volcano (2008-2009) that caused the partial destruction of the forest and the profound alteration of Blanco River's morphology. The application of the IC on different land cover scenarios, derived by combining field observations and satellite image classification techniques, showed an increase in sediment connectivity after the volcanic eruption. In addition, the results highlighted different patterns of connectivity according to the expansion of the active channel induced by the massive input of pyroclastic material. The approach proposed in this study case offers a methodology to investigate sediment connectivity in a river catchment affected by natural disturbance where high-resolution data are not available. The results of the study help to improve knowledge on the effect of volcanic eruptions in the hydrologic catchment and to improve watershed management strategies in such kind of environment.

Data from https://intranet.cnr.it/people/