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Abstract—Areas of enhanced erosion may be considered as markers 

of tectonic processes as far as the signals resulting from non-tectonic 

controls of landform evolution can be isolated. In this study spatial 

distribution of strong erosional signal recorded in morphometric 

attributes of the land surface, longitudinal stream profiles and valley 

morphology is examined and confronted with lithological diversity 

of the area. 

I.  INTRODUCTION 

Areas of enhanced erosion may indicate higher tectonic 

activity (as uplift drives erosion), lower resistance of bedrock to 

erosional factors and forces, or abundant precipitation. These 

controls frequently occur in combination and thus, one of the most 

important and challenging tasks in tectonic geomorphology is to 

separate the signal resulting from different controlling variables 

and to avoid overinterpretations. 

In this study we first aim at identification of areas whose 

morphometric properties may reflect the enhancement of 

erosional processes, whatever reasons stood behind. To do so, a 

few different approaches were involved, all basing on 

morphometric and statistical analysis of various datasets. These 

include maps of spatially continuous morphometric parameters 

derived from LiDAR-based DEM, as well as discrete measures 

calculated for specific locations and ascribed to points or lines. 

The protocol for identification of erosional ‘hotspots’ was 

applied to the Orlickie-Bystrzyckie Mountains Block (Sudetes, 

Central Europe), which owes its emergence to late Cenozoic uplift 

resulting from stresses from the Alps and the Carpathians, with 

the superimposed effects of long-term rock-controlled 

denudation. As lithological diversity of the area is high, the 

influence of bedrock properties on geomorphological markers of 

uplift needs to be considered in more detail. By contrast, spatial 

distribution of rainfall is relatively uniform over the area. 

 

II. METHODS 

A. Erosional signal in morphometric attributes of the land 

surface 

To distinguish highly dissected terrains eight morphometric 
parameters with the potential to record erosional signal were 
selected in the first step. These include:  

(1) relative elevation (rel_elev) 

(2) standard deviation of elevation (std_elev) 

(3) coefficient of variation of elevation (cv_elev) 

(4) Terrain Ruggedness Index (TRI, [1]) 

(5) standard deviation of curvature (std_curv, [2,3]) 

(6) slope 

(7) Topographic Wetness Index (TWI, [3,4]) 

(8) Valley Depth (val_dep, [5])  

These parameters were derived form LiDAR-based DEM, 
resampled to 30x30 m spatial resolution. Most of them were 
calculated for the local neighbourhood, that is within 5x5 moving 
window. The approach is based on the assumption that the increase 
in values of the parameters reflects an increase in erosional 
dissection of the area, although this may be debatable for TWI. 

To eliminate variables that do not discriminate observations 
efficiently, the coefficient of variation for each parameter was 
calculated. As for all eight variables it exceeds 10%, there was no 
need to eliminate any of them in this step. 

As some of the parameters were suspect to be highly 
correlated, the correlation analysis was performed in order to 
eliminate variables which replicate information. The selection of 
the Spearman’s correlation coefficient, as a measure of mutual 
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dependency, was determined by both statistical distribution of the 
variables (far from being normal) and the presence of outlier 
observations. Prior to correlation analysis median filter was 
applied to all parameters as a smoothing technique. This was 
dictated by relatively small neighbourhood for the calculation of 
some parameters and thus their high differentiation in space. 

In the correlation matrix all pairs of variables characterized by 
the absolute value of Spearman’s correlation coefficient equal or 
exceding 0.8 were identified. From each of these pairs the 
parameter with the higher average degree of correlation with other 
variables was eliminated. This approach enabled us to reduce the 
total number of parameters taken into consideration in this study 
from eight to four (cv_elev, std_curv, TWI, val_dep).   

Nearly 2 million points ascribed to the central parts of the raster 
cells and characterized by a sequence of four selected parameters 
were then subject to clustering procedure in order to distinguish 
objects similar to each other from morphometric perspective and 
thus possibly recording the erosional signal of similar strength. 
Such a great number of observations prevents the application of 
hierarchical clustering algorithms and from the non-hierarchical 
ones the k-means method was selected. In order to determine the 
optimal number of clusters to distinguish (Fig. 1), the pseudo F 
statistics, also known as Caliński-Harabasz index [6], was 
calculated. As only two groups of observations should be created 
in the light of this measure, the alternative elbow method was also 
applied, but no clear indication of the optimal number of clusters 
was obtained in this way. 

 

Figure 1. The attempts to establish optimal number of clusters with the use of 
Caliński-Harabasz pseudo F statistic (A) and elbow method (B).  

B. Erosional signal in stream longitudinal profiles and valley 

morphology 

To identify ‘erosional’ sections of the streams, that is channel 

segments abnormally steep in respect to the adjacent ones, stream 

length–gradient index (SL index) [7] was applied. It was 

calculated for 400 m long river segments according to the formula 

below (1):  

𝑆𝐿 = (𝛥𝐻/𝛥𝐿)𝐿 (1) 
where:  

𝛥𝐻 – change in elevation  

𝛥𝐿 – horizontal length of the segment 

𝐿 – distance to the highest point in the channel 

All river segments with the local slope possibly affected by 
anthropogenic elements (roads, bridges, reservoirs) were excluded 
from further analysis. Channel segments of higher steepness, that 
is those characterized by higher SL-index values, were identified 
in two different ways. In the quantile-based approach they were 
distinguished as those exceeding upper tercile, quartile and 
quintile of SL-index statistical distribution in which all examined 
river segments in the study area were taken into account. In the 
alternative, model-based approach erosive segments of river 
channels were recognized as follows. In the first step the chart 
presenting the variablity of SL-index along the river course was 
plotted for each stream separately (Fig. 2A). To this plot a linear 
model was adjusted and the residuals for each location were 
computed. For the positive ones the average residual value was 
calculated. All river segments typified by residuals exceeding this 
value were considered ‘erosive’. This procedure was repeated also 
in local slope analysis, in which distance between the river 
segment (its midpoint) and the spring of a river (L) was not 
considered. The only difference was the adjustment of the 
logarithmic curve to the data, instead of the linear trend (Fig. 2B).  

 

Figure 2. Variability of SL-index (A) and local slope (B) along exemplary streams 
with adjusted models.  

In the final distinction (aggregate approach) erosive segments 
of river channels were identified as locations of superposition of 
20% of observations with the highest SL-index values (quantile-
based approach) and those distinguished as erosive in both model-
based approaches (Fig. 2).  

In the identification of erosive sections of river valleys, that is 
segments shaped by intensive river downcutting, valley floor 
width –valley hight ratio (Vf index) given by formula (2) was 
applied [8].  
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𝑉𝑓 =  
2𝑉𝑓𝑤

(𝐸𝑟𝑑 − 𝐸𝑠𝑐) + (𝐸𝑙𝑑 − 𝐸𝑠𝑐)
                         (2) 

where:  

𝑉𝑓𝑤 – valley floor width  

𝐸𝑟𝑑 , 𝐸𝑙𝑑  – elevation of right and left divides 

(𝐸𝑠𝑐 – elevation of stream channel 

As many minor streams crossing the mountain-piedmont 
junction in the eastern part of the study area do not have any 
distinctive valley forms, the delimitation of which is essential for 
the purpose od Vf index calculation, this analysis was restricted to 
the western slope of the Orlickie Mountains.  

The Vf index was calculated for the same locations for which 
SL-index was computed in order to allow their comparative 
analysis, mostly in terms of mutual correlation. Contrary to the 
latter, lower values of Vf index are indicators of more intensive 
erosion related to river downcutting. For identification of erosive 
valley segments the quantile-based approach, similar to the one 
introduced in the SL-index analysis, was applied.  

As Vf index does not take account of slope of valley sides in a 
direct way, spatial distribution of steep valley sides (that is raster 
cells with the slope exceeding the upper quartile of statistical 
distribution) was also examined.  

C. Lithological control on indicators of erosional signal  

To assess the influence of diversified lithology on erosional 
dissection the non-parametric chi-square test of independence was 
performed. The categorical variable was considered in two 
different levels: general and detailed. While in the former the 
distinction was made only between crystalline basement and 
sedimentary cover, lithological diversity in the latter was 
considered in a more detailed way.  

In chi-square test of independence the comparison is made 
between observed (empirical) values of a numeric variable with 
the theoretical ones established on the basis of the marginal 
distribution [9]. The assumption of the null hypothesis is that the 
numeric variable does not depend on the categorical one. The test 
statistic is given as below (3): 

𝜒2 =  ∑ ∑
(𝑛𝑖𝑗 − 𝑛𝑖𝑗

′ )2

𝑛𝑖𝑗
′

𝑠

𝑗=1

𝑘

𝑖=1

                         (3) 

where:  

𝑛𝑖𝑗 – observed values 

𝑛𝑖𝑗
′  - expected values 

𝑘, 𝑠 – number of levels in both variables 

Given the null hypothesis is true, the test statistic has chi-
squared distribution with (k-1)(s-1) degree of freedom. For 
significant test results mosaic plots were used to illustrate the 
pattern of deviation from independence [10].  

In this study the numeric variable was expressed relatively, that 
is as percentage of area occupied by ‘erosive’ cluster within 
different lithological units or, respectively, as the length of erosive 
segments of river channels or valleys. 

III. RESULTS AND INTERPRETATION 

Given that no clear indication of the optimal number of groups 
to distinguish in the clustering procedure was obtained in the light 
of the elbow method, this number was established arbitrarily as 
five (Fig. 3A). As the cluster-specified average values do not 
maintain the same order for the parameters taken into 
consideration (Fig. 3B), it is not possible to rank the clusters in 
terms of increasing signal of erosional dissection. Nevertheless, 
basing on both their spatial and statistical characteristics, clusters 
no. 3 and 4 were considered as carriers of the strongest erosional 
signal. 

 

Figure 3.  The results of k-means clustering (A) with the average values of all 
parameters calculated for each cluster separately (B).  
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Erosive segments of river channels obtained on the basis of the 
aggregate approach were sparse and short. Therefore, the quantile-
based approach to their identification was solely included in 
further interpretations. Surprisingly, no statistically significant 
correlation between SL- and Vf index values calculated for the 
same locations was demonstrated  (rho = -0,26).  

In the final distinction of areas, whose morphometric 
properties may reflect the enhancement of erosional processes, the 
superposition of the most ‘erosive’ clusters (3 and 4 on Fig. 3) and 
erosive segments of river channels and river valleys, both 
identified in the SL and Vf quantile-based approaches, was 
considered (Fig. 4). The spatial distribution of steep valley sides 
was also taken into account. 

 

Figure 4.  Belts of tectonic deformation of relief distinguished on the basis of 
spatial distribution of erosive segments of river channels and river valleys identified 

by SL- and Vf  index and their affiliation to the most ‘erosive’ clusters (no. 3 and 
4 on Fig. 3). Basement rocks other than phyllites are indicated in grey. 

As the influence of lithological diversity of the area can be 
considered minor (Fig. 5), the erosive signal recorded in 
morphometric attributes of the land surface, longitudinal stream 
profiles and valley morphology is interpreted as the response to 
geologically recent and ongoing uplift of the area. 

Three belts of tectonic deformation of relief, elongated parallel 
to the morphological NNW–SSE axis of the mountain block, were 
recognized (Fig. 4). The spatial pattern of variable intensity of 
endogenic processes is consistent with the geological situation of 
the region, especially with the distribution of remnants of the 
Cretaceous sedimentary cover. 

 

 Figure 5.  Relationships between relative frequencies of segments identified as 
erosive (see Fig. 4) in total length of the streams for different lithological units. 
Note statistically significant overrepresentation of these segments within phyllites 
(AMP – amphibolites, GNE – gneisses, GRE – greenschists, MAR – marls, OTH – 
other metamorphic schists, PHY – phyllites). 

This paper is a contribution to Research Project no. 
2015/19/N/ST10/01530, supported by the National Science 
Centre. 
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