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Abstract—This work aims to study the patterns of changing 

morphometric characteristics of thermokarst plains with fluvial 

erosion for different variants of their development. The research 

involved a series of essential morphometric parameters of the 

thermokarst plains with fluvial erosion, such as the number of lakes 

at a trial plot, a number of khasyreis at a trial plot, and areas of 

thermokarst lakes. The developed a probabilistic model is suitable 

for a homogenous area with a continuous generation of new 

thermokarst depressions ("asynchronous start") under a stable 

climate. The mathematical analysis of the model shows that after a 

long time of development with uneven occurrence and vanishing 

(drainage) of lakes, we get the stable share of the area covered by 

water and a particular distribution for the lakes' area – an integral 

exponential distribution. We chose 17 key sites in different regions 

of Western and Eastern Siberia and Canada for empirical testing of 

the model. The examination includes checking the conformity of the 

area samples to different types of distributions by the Pearson 

criterion. The test used aerial and satellite imagery of the two survey 

dates, including Corona archival photographs. The research 

revealed that at a majority of the key sites, the areas of the 

thermokarst lakes obey the integral-exponential distribution within 

homogeneous sections of the thermokarst plains with fluvial erosion 

in different natural environments. Moreover, the morphological 

pattern of the thermokarst plains with fluvial erosion is in a state of 

dynamic balance, and forecasting development and assessing natural 

risks should take it into account. 

I. INTRODUCTION 

Many researchers deal with the cryolithozone landforms 
[1,2,3,4], but only a few of them analyze the behavior of 
morphometric parameters. The goal of this work is to study the 
patterns of changing morphometric characteristics of thermokarst 
plains with fluvial erosion. 

Landscapes of thermokarst plains with fluvial erosion also 
include slight wavy subhorizontal areas covered by tundra 

vegetation, interspersed with lakes, and khasyreis (a khasyrei is a 
drained thermokarst lake), and crossed by a rare enough fluvial 
erosion network. The lakes of isometric often roundish shape are 
randomly scattered across the plain. Khasyreis are also isometric 
flat-bottomed and flattened peaty depressions covered with 
meadow or bog vegetation; like the lakes, they are randomly 
distributed across the plain (Fig.1). 

The research involved a series of essential morphometric 
parameters of the thermokarst plains with fluvial erosion, such as 
a number of lakes at a trial plot, a number of khasyreis at a trial 
plot, and areas of thermokarst lakes. Thermokarst, thermoabrasion, 
and thermoerosion have a complex interrelation affect the area. As 
a result, new primary thermokarst depressions appear; different 
thermokarst depressions grow independently on each other as 
lakes (ponds) due to thermoabrasion; at a random moment, a lake 
can be drained by fluvial erosion and transforms into a khasyrei. 
At that, its growth stops because of the absence of water. These 
processes change the mentioned above morphometric parameters 
raising the following questions: 

- What are the laws ruling the analyzed parameters? 

- What are the dynamics of the analyzed parameters for a 
long time of development? 

- Does the up-to-date climatic change influence the laws 
ruling the analyzed parameters?   

II. METHODS 

We developed a probabilistic analytical model suitable for a 
homogenous area with a continuous generation of new 
thermokarst depressions ("asynchronous start") under a stable 
climate. The model belongs to the recent scientific branch called 
"the mathematical morphology of landscapes"[4]. 
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Figure 1.  A typical image of a thermokarst plain with fluvial erosion on the 

remote sensing data. 

The base of the model 1.0 includes the following underlying 
assumptions: 

1. Thermokarst depressions (germs of thermokarst lakes) 
were appearing within a relatively short period independently 
across the different non-adjacent sites. At that, for small plots and 
time intervals, the probability of several depressions to occur is 
much less than that of a single depression.  

2. The change of the radius of an appeared thermokarst 
depression is a random variable; it is independent of other lakes, 
and the growth rate is directly proportional to heat losses through 
the side surface of the lake basin. 

3. In the course of its growth, a lake can transform into a 
khasyrei after draining by the erosion network; the probability of 
this does not depend on the development of other lakes; if it 
happens, the depression stops growing. 

4. The appearances of new sources of fluvial erosion within 
a randomly selected area are random and independent events. At 
that, the probability of occurrence of more than one source is an 
infinitesimal of a higher-order than the probability of the 
appearance of one source. 

5. The primary thermokarst depressions do not occur within 
already existing thermokarst lakes.   

The following primary dependencies obtained earlier in the 
frames of the mathematical morphology of landscapes are valid 
[1,4]: 

- The radius distribution for free growing thermokarst lakes since 
time t after lake emergence (lognormal distribution): 
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where  ,a are distribution parameters, t is the time since the 

process has started. 

- The distance distribution from the center of the growing lake to 
the nearest sources of erosion structure (stream) which stops the 
lake growth and transform it into a khasyrei, obeys the Rayleigh 
distribution 
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where  is an average density of the stream sources. 

-  The number of primary depressions on a free surface without 
lakes corresponds to the Poisson distribution.  

The most uncomplicated characteristics include a number of 
lakes and a number of khasyreis within a random plot. Since the 
probability for a lake to transform into a khasyrei does not depend 
on its location, it is easy to show that the distributions of lakes and 
khasyreis within a test plot are Poisson at any moment.  

The behavior of lakes' areas is more complicated. The density 
distribution of the lake radii at time t is equal to the ratio of the 
number of lakes of a given radius to the total number of lakes, 
taking into account the different times of their appearance and the 
probability not to transform to a khasyrei. The assumption of the 
model that primary depressions appear only outside the lakes 
means that a variable density of generation of initial depressions is 
equal to 

)]t(P1[)t( l1 −=   (3) 

where )(tPl  is a share of water covered area,   is a generation 

density of initial depressions within the free of lakes territory. 

The function )(tPl  is a fraction of the whole area occupied 

by lakes at time t and, as shown earlier [4], is related to the process 
parameters by the dependence 
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where )(ts  is an average lake area at time t, )(t is an average 

number of lakes per unit area at time t. 

The probability of a lake to remain the lake without 
transforming into a khasyrei depends on the lake radius 
distribution in the case of free growth if the distance to a fluvial 
source is more significant than the lake radius. The distance to the 
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source fits the Rayleigh distribution (2). Thus, after simplification, 
the distribution density for the thermokarst lakes at time t is equal 
to 
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Let us examine the area distribution of the thermokarst lakes 
after a long time of development, which we observe now. First, 
our model gives us an expression of the dynamics of a share of 
the area covered with water. If we take the average lake area from 
the above formula for the lake radius distribution, then involving 
equations (4) and (1) after simplifying and taking the logarithm 
we get the integral equation [5] 
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The function )(tPl is the solution of this equation. Using this 

integral equation, we can show that if the integral converges 
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and the solution of the equation (8) (at that, we can prove that this 
equation has a solution and the only one)does not exceed 

)1( 1−−e  that is 0.63; then, there is a limit of function )(tPl if 

+→t . It is equal to the solution of the equation (
*

lP ). The 

proof needs the construction of a pair of step functions that bound 

a function )(tPl from above and below [4,5].   
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Under these conditions, ensuring the existence of a limiting 
value of the lake area percentage, there is also a limiting 

distribution of the radii of lakes if +→t  
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Using expression (1) for the density distribution of the lake 
radii in the case of free growth and calculating the upper integral 
as the Laplace transform, we obtain the area distribution (with 
area for the primary depressions)   
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is an integral exponential function, and thus, this distribution can 
be called the integral exponential distribution. 

Thus, our model shows that after a long time of development, 
we obtain the stabilization of the total lake area and the integral 
exponential distribution of lake areas. The empirical testing of 
these analytical results involved 17 key sites within the 
thermokarst plains with fluvial erosion in different natural 
environments (Fig. 2). 

 

Figure 2. A location scheme of the key sites of the thermokarst plains with 

fluvial erosion. 

We used repeated remote sensing data. The first date of the 
survey comes from the archive Corona imagery (3-7 m/pix, 1965-
1976) for eleven key sites. The recent imagery includes Sentinel 
2A 2017-2018, Resurs-P, ICONOS, QuickBird, Worldview 2, 
Geoeye-1, 2008-2014 for the whole set of 17 key sites.  

We found the Pearson criterion for the common distributions 
using the STATISTICA package, while we have to make a special 
software for the integral exponential distribution. Parameter ε  is 

the minimal value of the sample, while γ  resulted from the 

numerical solving the equations in the frame of this software 
package. 
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where s  is an average lake area. 

III. DISCUSSION  

The empirical data of the thermokarst lakes from the key sites 
include samples from 49 to 2108 lakes. The empirical distributions 
fit the integral exponential distribution (fig. 3 as an example) for 
ten key sites from 17 key sites (59%) of the second date and five 
key sites of 11 (45%) of the first date.  

 

Figure 3. A graph demonstrating closeness between an empirical 

distribution and the integral exponential distribution (key site 28). 

At the same time, the lognormal distribution characterizes area 
distribution of the thermokarst lakes at eight key sites of 17 of the 
second date. For three key sites of these 17, the empirical 
distributions of the thermokarst lakes' areas obey both the gamma 
and lognormal distributions. This situation corresponds to the 
synchronous start model [4] and can be explained by two reasons: 

- At the first stage, the thermokarst plains with fluvial 
erosion are just lacustrine thermokarst plains since the 
probability of lake drainage was small due to their little 
size; this causes the lognormal distribution of the lakes' 
areas. 

- The integral exponential distribution is a limit distribution 
at →t , while the time since the start of the thermokarst 

process is long but finite. 

Interestingly, typical lacustrine thermokarst plains fit 
generally the lognormal distribution only [4]. 

We can explain the fact that the distribution of the lake areas 
fits neither the integral exponential nor the lognormal distribution 
for several key sites by the beginning change of these sections 
under the influence of climate change. Four of these key sites 
demonstrate a significant (by the Smirnov's criterion) difference in 
the distribution of lake areas for the two periods. 

IV. CONCLUSIONS 

The model fitting the asynchronous start and the lake growth 
rate proportional to heat losses through the side surface is relevant 
for most of the homogenous sections of thermokarst plains with 
fluvial erosion in different natural environments.  

These sections have mostly integral exponential distribution of 
the thermokarst lake areas.  

The morphological pattern of the thermokarst plains with 
fluvial erosion can be in the state of the dynamic balance; natural 
risk assessment and prognosis studies should take it into account.  

There are the signs of a shift of the dynamic balance apparently 
due to climate change.  
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