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Abstract— Landslide susceptibility is the likelihood of landslide 

occurrence in a specific geographic location. A complicated 

interaction between various morphometric, climatic, seismic, and 

anthropogenic variables governs landslide susceptibility. Among 

these variables, morphometric causative factors are important for 

the generation of landslide susceptibility maps as they provide the 

basic information related to the topography. In fact, many 

morphometric variables are commonly included in landslide 

susceptibility analyses. Additionally, an accurate landslide inventory 

is a key input to both train and validate a classification model used 

to prepare susceptibility maps. The objective of this work is to 

investigate the significance of the causative factors, in relation to 

different landslide inventories, and their contribution to landslide 

susceptibility mapping. To do so, we selected a set of five earthquake-

induced landslide inventories, developed independently in the 

aftermath of the 2015 Gorkha earthquake. We obtained landslide 

susceptibility maps in the framework of a logistic regression model 

using slope units as spatial mapping domains. We evaluated the 

significance of the different independent variables relying on p-

values corresponding to the susceptibility maps obtained from each 

inventory. We examined the performance of susceptibility maps by 

pairwise comparison between the inventories, finding that the 

significance of variables is not entirely consistent for all inventories. 

This implies that preparation or selection of a landslide inventory for 

earthquake-induced landslide susceptibility is a non-trivial step. The 

pairwise validation of different maps also shows the robustness of the 

performance varies upon using different inventories.  

I. INTRODUCTION 

The disastrous earthquake of a magnitude 7.8 at Gorkha, 
Nepal, on April 25, 2015 triggered numerous landslides in the 
central Nepal Himalayas. Many researchers carried out the post-
earthquake assessment of landslides by producing inventories and 
susceptibility maps, however, the relevance of independent 
variables causing landslides has not been specifically analyzed. 
The factors contributing to the reliability of susceptibility maps 
calculated from such inventories are the completeness of 

inventories, the type of mapping units utilized for zonation, and 
the sampling balance between the inventories [1-2]. Furthermore, 
the choice of predictors, specifically the morphometric variables 
derived from a digital elevation model (DEM), is often made 
without addressing their significance, with a few exceptions [3]. 

 In this study, we selected five existing landslide inventories 

mapped in the same region after the Gorkha earthquake event. We 

checked the relevance of the independent variables, performed 

accuracy assessment on each landslide susceptibility map and 

validated using the remaining inventories.   

II. MATERIAL AND METHODS 

In this work, we used five landslide inventories, for the 
landslide triggered by the Gorkha Earthquake 2015, prepared 
independently by [4-8]. The first four inventories are polygon-
based and the last is point-based inventory. The study area covers 
the section of Rasuwa, Nuwkot and Sindhupalchowk districts 
(Figure 1). Table I shows the descriptive details about the five 
inventories and slope units used in this work.  
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[4] 1,264 66 10.82 0.74 

[5] 1,780 87 9.68 0.66 

[6] 1,765 81 14.28 0.98 

[7] 359 54 3.68 0.25 

[8] 371 63 Point inventory 

Table I. Details about landslide inventories used in this study. 

In this work, we performed the following six steps: 
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Step 1: Five inventories were chosen so that they cover the 
most affected areas of the earthquake-triggered landslides in the 
central Nepal. One of the authors (BP) actively participated in 
preparing the inventory from Ref. [4]. 

 

 

Figure 1. Map of study area. Slope units were delineated in GRASS 
GIS using the algorithm developed by Ref. [9]. Map is in 
EPSG:32645 reference system. 

 

Step 2. A slope unit (SU) map over the study area was available 
for this study. The SU map was based on the algorithm developed 
in Ref. [9] and generalized to account for large areas in Ref. [10]. 

Step 3. We calculated 9 morphometric variables (raster maps) 
from the Cartosat-I DEM, and collected three dynamic parameters 
from the United States Geological Survey (USGS) Shake Maps 
published after the earthquake event [11] as independent variables 
responsible for the landslides. 

Step 4. We characterized each SU with presence or absence of 
landslides and with descriptive statistics (mean and standard  
deviation) of independent variables [2,12,13], except for 
landforms classes, for which we used the dominant class in each 
SU. We selected the DEM derivatives as independent variables 

(Table II), following Ref. [1], who performed a similar analysis. 
The selected variables have a rather straightforward interpretation 
in terms of their effect on landslides.  

Type 
Independent 

variables 
GRASS GIS module/Reference 

Dynamic PGA [11] 

Dynamic PGV [11] 

Dynamic MMI [11] 

Static Slope r.slope.aspect 

Static 
Topographic 

Wetness 
Index (TWI) 

r.topidx [14] 

Static 

Vector 
Ruggedness 

Measure 
(VRM) 

r.vector.ruggedness [15] 

Static Local relief r.neighbors [16] 

Static 
Landform 

classes 
r.geomorphon [16] 

Static 
Plan 

curvature 
r.slope.aspect 

Static 
Profile 

curvature 
r.slope.aspect 

Table II. List of independent variables as studied in [1] and adopted in 
this work. We also show the specific method used to calculate 
descriptive statistics by specifying GRASS GIS modules. 

Step 5. We chose the smallest number among the stable and 
unstable SUs (40, in the inventory from [5]) among the five 
different inventories to generate the training datasets. We 
randomly selected 75% of both stable and unstable SUs for each 
landslide inventory dataset, for a total of 60 SUs. We iterated this 
process for 20 times for each dataset and run the glm() function 
(generalized linear model, within the R language) to train the 
logistic regression (LR) – a widely used method in landslide 
susceptibility modelling. Then, we obtained descriptive statistics 
and run a χ-square test to calculate the p-values for all independent 
variables in 20 runs.  

Step 6. We prepared boxplots showing the distributions of p-
values associated to each inventory, stemming from the 20 runs. 
We checked the accuracy of the landslide susceptibility maps 
using area under curve (AUC), and validated the accuracy of the 
susceptibility map obtained from each inventory, on the slope units 
not used in the training step, selected from the same inventory and 
for the remaining for maps. The validation test corresponds to 20 
runs as well, from which we calculated mean and standard 
deviation of AUC for each train/validation pair. 
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Figure 2. Distributions of the significance (p-value) of the different 

variables in the logistic regression, obtained from 20 runs of the 

susceptibility model for each inventory, with different random 

selections of the training dataset. The horizontal dashed line 

represents the 0.05 significance threshold. 

Inventories Significant predictors 

Ref. [4] 
PGV (mean), Slope (mean), Profile curvature 

(mean) 

Ref. [5] 
PGV (mean), Slope (mean), TWI (S.D) Profile 

curvature (S.D) 

Ref. [6] Slope (mean), Profile curvature (S.D) 

Ref. [7] Slope (mean) 

Ref. [8] PGV (mean), Slope (mean), Profile curvature (S.D) 

Table III. Significance factors obtained for each inventory (p-value 
<0.05). 

III. RESULTS AND CONCLUSIONS 

Figure 2 shows boxplots of the distribution of p-values of each 
variable and for each landslide inventory dataset. Table III shows 
the variables for which the p-value was always smaller than 0.05, 
in all the 20 randomized runs of the LR. Although all inventories 
covered the same area, some inconsistency exists in the relevance 
of the predictors, which may be due to the different number and 
location of the landslides in the different inventories. In addition, 
for the same aerial extent, the number of stable and unstable slope 
units (i.e. of slope units containing no landslide or at least one 
landslide) differs for different inventories, which ultimately 
influences the content of landslide susceptibility maps. The 
morphometric variable that stood significant for all the inventories 
is slope (mean). Profile curvature (standard deviation) is invariably 
very significant for four inventories, while its significance was 
substantially smaller for the one from Ref. [7]. This implies that 
slope morphometry influences the spatial occurrence of landslide 
triggered by the Gorkha Earthquake 2015. We stress that the 
inventory from Ref. [7] contains the smaller number of landslides, 
which seems to produce a noticeable difference. Table IV lists the 
results for pairwise validation of the inventories in 20 runs for 
each. Performance was higher for each map if the validation data 

Trained 

by 

Validated by 

[4] [5] [6] [7] [8] 

[4]  0.68±0.06 0.71±0.06 0.68±0.05 0.58±0.06 0.68±0.06 

[5] 0.63±0.06 0.74±0.08 0.71±0.06 0.53±0.07 0.65±0.06 

[6] 0.63±0.06 0.73±0.07 0.71±0.07 0.57±0.07 0.69±0.04 

[7] 0.58±0.07 0.59±0.08 0.62±0.07 0.60±0.08 0.61±0.07 

[8] 0.70±0.07 0.70±0.08 0.70±0.07 0.62±0.07 0.69±0.07 

Table IV. Pairwise validation between five inventories. The table 
shows mean ± standard deviation for AUC of testing/validating 
dataset.   
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was from the same inventory, which is expected. The testing 
sample of the inventory from Ref. [7] had lower performance. The 
inventories [4], and [8] had same relevant variables (Table III) but 
the model performances varied. 

From our study, we may draw two main conclusions. First, the 
differences in significant predictors (within LR) creates a difficulty 
in interpretation and reliability of susceptibility maps. Among 
morphometric predictors, only mean slope and profile curvature 
are (almost) always significant – this is a relevant point, being 
morphometric variables the ones that stay constant across different 
earthquake events. Second, model performance (within LR) 
depends upon the number of landslides and/or completeness of the 
inventory. This is clearly shown by the inventory with smallest 
number of landslides ([7]) having the weakest performance. We 
stress that this point could be less relevant where the spatial extent 
of the study area is larger. Hence, it is necessary to make sure the 
inventories are representative, i.e. complete enough [17, 18], if one 
is to use them for landslide susceptibility.  
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