
Landslide topographic signature prediction using 
segmentation of roughness and Random Forest 

classification 
Mihai Niculiță§ 

Department of Geography 
Alexandru Ioan Cuza University of Iași 

Caro lI 20A, 700505 Iași, Romania  
§ mihai.niculita@uaic.ro

Abstract—Landslides creates a typical rough topography which is 
clearly distinguishable from other types of roughness created by 
other geomorphological processes or agents. Starting from the idea 
of geometric signature of topography induced by landslide processes 
I fed geomorphological objects obtained from segmentation of 
roughness and their geomorphometry to a machine learning 
algorithm in order to be able to predict landslide topography 
presence. The results are good in terms of overall accuracy (0.72 
sensitivity and 0.06 false positive rate), but further study is needed to 
improve the results and to test it in other physiographic settings. This 
approach of landslide presence prediction is of crucial importance 
for landslide hazard research, because landslides usually appear in 
areas previously affected by the process, and this information can be 
used in landslide susceptibility assessment. 

I.  INTRODUCTION

Landslide induced topography exhibit a clear 
geomorphometric signature [1-3]. Landslide roughness is different 
from fluvial roughness mainly in scale. The landslide roughness is 
also defined by more smoothness than pure fluvial roughness. 
Geomorphometrical objects [4] delineated based on roughness 
delineate landform facets/segments that exhibit elevation 
deviation both vertically and horizontally. The target is to use 
statistical information on the geomorphometry of these segments, 
in order to predict their landslide/non-landslide status. The main 
idea is that landslide topography is rough and with curvature 
different than non-landslide topography, and this morphometric 
signature can be targeted using high-resolution Digital Elevation 
Models (DEMs) and Random Forest (RF). 

The areas previously affected by landslides are more 
susceptible to be affected later by landslides [5,6], and a layer with 
the spatial extension of these landslides can be used in landslide 
susceptibility assessment [7,8]. 

Two study areas from Moldavian Plateau were selected for 
testing the proposed approach (Fig. 1 and 2).  

Figure 1.  The northern study area and the landslide mapping (a high-
resolution version is available at 
https://doi.org/10.6084/m9.figshare.12226673).

The two areas have a rectangular shape of 100 square km, and 
are in neighborhood of each other. In the northern study area, the 
landslide density (landslide surface proportion was computed from 
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the landslide inventory of [9]) is 7.53%, while in the southern 
study area the landslide density is 14,53%. Both relict, old and new 
landslides are present [10,11], with various typologies: flowslides, 
translational and rotational slides, and through landslide 
amalgamation compound and complex landslides appear mainly 
on the steep hillslopes of cuesta scarps [12,13]. 

II. METHODS 
A DEM with a spatial resolution of 5 m was obtained from a 

0.5 m spatial resolution bare earth LiDAR through bicubic 
resampling in SAG GIS [14]. Landslides were delineated using 2D 
and 3D views of hillshading, slopes and contours. All the areas 
affected by landslides were delineated without separating different 
landslide events, that are visible in topography. Relict landslides 
(see [11] for details on how the relative age was estimated) were 
not included in the delineation, mainly because their roughness is 
smoothed by the agricultural works (tillage and terraces). 

 
Figure 2.  The southern study area and the landslide mapping (a high-
resolution version is available at 
https://doi.org/10.6084/m9.figshare.12226838). 

The landforms segments were obtained through watershed 
segmentation of the vectorial roughness measure [15] computed 

based on the DEM in SAGA GIS [14]. For every segment the 
descriptive statistics (minimum, maximum, mean, sum, standard 
deviation, multiples of 5 percentiles) of the following 
geomorphometric variables were generated: altitude, vectorial 
roughness measure [15], real area, terrain ruggedness index [16], 
texture [17], slope [18] and curvatures (profile, plan, cross-
sectional, longitudinal, minimum, maximum) [19]. 

The Random Forest (RF) algorithm [20] implemented in R 
software [21] as randomForest package [22] was used for fitting 
the model. Latin hypercube sampling [23,24] was used to select 
the training dataset with the clhs package [25]. All the segments 
corresponding to the delineated landslides were selected in the 
training dataset while the latin hypercube sampling was used to 
select a double amount of non-landslide segments. The testing was 
performed on the southern study area dataset (external domain 
[26]). The RF parameters were tuned in order to derive the best 
model. An enough number of trees to grow (ntree=100), with a 
small number of variables randomly sampled as candidates at each 
split (mtry=3) and a small minimum size of terminal nodes 
(nodesize=1) are giving the best results. The performance of the 
models was evaluated in terms of confusion matrix, and not in 
terms of Out-of-bag (OBB) error. Another important aspect of 
tuning is the sampling and the class imbalance. The sampling was 
performed statistically (latin hypercube), but the class proportion 
is important and used together with priors of the class 
(classwt=c(0.1,0.9)) parameter of the RF model in order to deal 
with class imbalance. 

III. RESULTS AND CONCLUSIONS 
The confusion matrix for the northern study area, where the 

model was fit and for the southern study area, where the model 
was evaluated are shown in Table I.  

TABLE I.  THE CONFUSION MATRIX AND ITS MEASURES FOR THE NORTHERN 
STUDY AREA (FIRST ROW) AND SOUTHERN STUDY AREA (SECOND ROW) 

RF 
parameters 

OBB 
error TP TN FP FN SNS FPR 

10000 
segments from 

which 946 
landslides, 100 
ntree, 5 mtry, 1 

nodesize 
 

5.23 

9223 147615 2698 4471 0.67 0.018 

14428 137798 8528 5593 0.72 0.058 

 
Sensitivity and false positive rate are shown in order to assess 

an overall view of the result, since accuracy is not necessarily the 
best measure. 

The sampling was performed statistically (latin hypercube), 
and the class imbalance is consistently dealt with this approach: 
the sampling keeps the proportion of landslide vs. non-landslide 
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segments, and the results are better with RF models that do not 
assign weights or priors for imbalanced classification. All the 
geomorphometric variables and their statistics (285) were used in 
the final model. In this way, all the geomorphometric information 
is used for the identification of landslide segments. The overall 
accuracy seems to be good enough, but the spatial results need to 
be investigated. It seems that especially the basal part of 
landslides is occupied by false negative segments and the crown 
by false positive segments (Fig. 3 and 4). False positive segments 
also appear on some relict landslides and in settlement areas, 
where there is a certain roughness related to be anthropic 
modifications of topography. Some unfiltered vegetation, and 
several gullies also are considered topography related to 
landslides by the model. 

 
Figure 3.  The northern study area and the predicted landslide segments. (a 
high-resolution version is available at 
https://doi.org/10.6084/m9.figshare.12226853). 

IV. CONCLUSIONS 
The landslide prediction based on roughness proved to be 

feasible in an object-based approach. The segments that are not 
predicted (the false negatives) are located mainly inside landslides, 

where the topography is not rough for various reasons (landslide 
mass deformation, agricultural works or lake presence). The 
segments that are predicted as landslides, but in fact are not (false 
positives), fall in three categories: i) settlements, ii) relict 
landslides, iii) river and gully incision. While the results can be 
considered satisfactory for now, future improvements are 
welcomed. 
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Figure 4.  The southern study area and the predicted landslide segments. (a 
high-resolution version is available at 
https://doi.org/10.6084/m9.figshare.12226883). 
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