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Abstract—An intense earthquake not only induces numerous 
landslides over a broad area, but can also trigger landslides; this is 
because the ground loses strength when strong tremors occur. 
Following an earthquake, landslide susceptibility should be 
appraised immediately to avoid further disasters and enable safe and 
prompt restoration work to proceed in the affected region. This 
study developed a topographic index to represent a soil mass with 
dense seismic ground cracks (DCI), to allow the degree of ground 
disturbance to be expressed on a local scale. The index was then used 
as a conditioning factor in a statistical model based on the weight of 
evidence (WoE) approach, to assess the correlation between DCI and 
landslides and estimate landslide susceptibility. An analysis of 38 
post-seismic slides was conducted in a 2 km2 area of the Aso region 
in Kyushu, Japan, where a powerful earthquake (Mw 7.0) struck in 
April 2016. Tectonic, seismic, lithological, climatic, and vegetational 
conditions were assumed to be similar over the area due to its small 
size, and only topographic conditioning factors were considered. The 
results demonstrated a correlation between DCI and post-seismic 
landslide occurrence, and the area under the receiver operating 
characteristic curve (AUC) indicated slightly greater model 
accuracy when DCI was included. Further studies using larger 
datasets are required to develop an appropriate model to express the 
relationships between the index and controlling factors, to improve 
the accuracy of post-seismic slide susceptibility assessments. 

I.  INTRODUCTION 

An intense earthquake can trigger numerous landslides over a 
broad area, causing damage to human lives, property, and 
infrastructure. Following an earthquake, an area will remain prone 
to landslides because ground that is affected by strong tremors 
requires months to years to recover its strength. Under these 
circumstances, landslide susceptibility should be appraised as soon 
as possible to avoid further disasters and enable safe and prompt 
restoration work to begin in the area. Appraisals are often made by 
the “direct method” [1], i.e., identifying topographic features 
indicative of slope instability, such as ground cracks, slope knick 

lines, and steep slopes, via field survey and/or examining aerial 
photographs or topographic maps derived from a light detection 
and ranging (LiDAR) survey. However, this is time-consuming 
and labor-intensive work, and the outcome can vary according to 
the skill of the operators. As an alternative, landslide susceptibility 
can also be estimated indirectly using a statistical model 
incorporating tectonic, lithological, climatic, hydrologic, 
topographic, and vegetation conditioning factors [2]. This method 
has been widely applied to co-seismic slides [3,4,5], while it has 
rarely been used for post-seismic slides, possibly because of a 
shortage of information regarding landslides after an intense 
earthquake. An appropriate and accurate model for post-seismic 
slides would facilitate assessments of landslide susceptibility over 
a broad area.   

In this study, we attempted to develop a statistical model to 
appraise post-seismic landslide susceptibility by considering 
seismic ground cracks. The location of the ground cracks is a key 
issue when using the direct method, but is rarely considered in 
statistical models, due to the coarse resolution of elevation data 
and the difficulty of digital expression of the features. A 2 km2 area 
of the Aso region in Kyushu, Japan, where a powerful earthquake 
(Mw 7.0) occurred in April 2016, was selected for the analysis 
(Figure 1). As the first step, an index to represent soil mass with 
dense seismic ground cracks (DCI) was proposed by employing a 
surface roughness filter. The DCI, together with topographic 
factors selected following a field survey [6], was then assessed 
using the weight of evidence (WoE) approach [7], to examine the 
correlation between the indices and the occurrence of landslides, 
and estimate landslide susceptibility. Finally, landslide 
susceptibility estimations were compared with versus without use 
of the DCI, to determine the improvement in the model achieved 
by incorporating seismic ground cracks into the set of conditioning 
factors.  
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II. STUDY AREA 

The study area was located on a flank of the caldera wall of the 
Aso volcano, underlain by Middle Pleistocene pyroxene, andesite, 
and pyroclastic rock. The 2016 earthquake caused 76 slides and 
numerous cracks over an area of 2 km2. A further 38 landslides 
were later induced by rainfall; these were of the shallow 
translational type, and some of them yielded a debris flow. 
Landslides increased in size continuously following the 
earthquake; this phenomenon was not accounted for in this study. 
A landslide inventory was compiled based on aerial photographs 
and LiDAR survey data acquired simultaneously in January 2015, 
and in April and August 2016. Slopes where landslides were 
initiated were targeted for the analysis; therefore, sediment transfer 
and deposition zones were not included in the inventory. Tectonic, 
seismic (e.g. peak ground acceleration), lithological, and climatic 
conditions were presumed to be equal throughout the study area 
due to its small size. The entire area was covered with aged 
Cyptomeria japonica. 

 

Figure 1.  Study area (outlined in red) 

  

III. METHODS 

The DCI was derived from a surface roughness filter, based 
on the assumption that crack formation is associated with an 
increase in roughness. In this study, we applied a standard 
deviation of a slope angle for 3 × 3 cells, σs, proposed by [8], to 
the filter, using a 1-m digital elevation model (DEM). We 
assumed that cracks appeared in cells where the change in 
standard deviation from pre- (January 2013) to post- (April 2016) 
earthquake conditions (σs chg) was greater than or equal to a 
threshold value (Cm). The change was calculated as follows:  

𝜎௦ ௖௛௚ = 𝜎௦ ௣௢௦௧ − 𝜎௦ ௣௥௘ (1) 

where the subscript indicates the timing of the LiDAR survey 
used to produce two DEMs. We compared the spatial distributions 
of σs chg and seismic ground cracks identified in the field, or based 
on topographic maps generated after the earthquake, to determine 

Cm. Then, cells with σs chg ≥ Cm were converted into points to 
calculate the point density using a kernel density function with a 
bandwidth of 10 m for each 1-m cell in the ArcGIS software 
environment. The density was defined as DCI.  

The WoE method [7] was applied to estimate the 
susceptibility to post-seismic landslides. A bivariate model was 
used to examine the correlation between DCI and the occurrence 
of post-seismic landslides. We randomly selected 68% of the 
landslides (26) to train the model; the remaining 12 were used for 
testing. The correlation between a certain conditioning factor 
class and landslides is given by the contrast, C, as follows:  

𝐶 = 𝑊ା − 𝑊ି (2) 

where 𝑊ା  is the positive weight of evidence for a certain 
conditioning factor class, and 𝑊ି  is the negative weight of 
evidence for the class for a 1-m cell. They are given by:  

𝑊ା = ln
𝑃(𝐹|𝐿)

𝑃(𝐹|𝐿)
 (3) 

𝑊ି = ln
𝑃(𝐹|𝐿)

𝑃(𝐹|𝐿)
 (4) 

where L indicates the presence of a landslide, F indicates the 
presence of a value within a certain conditioning factor class, 𝐿 
indicates the absence of a landslide, 𝐹 indicates the absence of a 
value within a certain conditioning factor class, 𝑃(𝐹|𝐿) is the 
probability of a 1-m landslide cell conditioning a value within a 
certain conditioning factor class, 𝑃൫𝐹ห𝐿൯ is the probability of a 
cell outside of a landslide containing a value within a certain 
conditioning factor class,  𝑃൫𝐹ห𝐿൯  is the probability of a 1-m 
landslide cell not containing a value within a certain conditioning 
factor class, and 𝑃൫𝐹ห𝐿൯ is the probability of a cell outside of a 
landslide not containing a value within a certain conditioning 
factor class. The combination of positive 𝑊ା and negative 𝑊ି, 
or high 𝐶 , suggests a positive relationship between landslide 
occurrence and that conditioning factor class. In contrast, a 
combination of negative 𝑊ା  and positive 𝑊ି  indicates a 
negative relationship. If landslide occurrence is independent of the 
factor class, then 𝑊ା and 𝑊ି both equal 0. The classes of DCI 
and other conditioning factors, slope angle, plan and profile 
curvature, and topographic wetness index (TWI) obtained for each 
1-m cell are shown in Table 1. The plan and profile curvature 
values for each cell provided excessively detailed topographic 
information, and appeared not to show the effects of slope profiles 
on landslide occurrence appropriately. Therefore, we averaged 
these values within a 10-m radius of each cell, as described 
previously by [9], and incorporated the results into the model. The 
variance inflation factor (VIF) of the included factors ranged from 
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1.03 to 1.13, confirming their independence. C values obtained for 
each conditioning factor were summed for each 1-m cell and used 
as a landslide susceptibility index for the cell. The accuracy of the 
models with/without use of the DCI was compared based on the 
area under the receiver operating characteristic curve (AUC) for 
true and false positive rates.  

IV. RESULTS AND DISCUSSION 

The standard deviation of slope angle increased by more than 
2° after the earthquake in 75% of the locations where ground 
cracks were identified; therefore, we set Cm as 2° (Figure 2). Table 
1 shows a negative contrast for DCI values < 0.2, which increased 
in classes with high DCI values. Overall, the factor that had the 
greatest influence on post-seismic slides was a DCI value over 0.6. 
The results suggest that integration of the DCI was favorable for 
estimating susceptibility to post-seismic landslides. Profile 
curvatures from -4 to 0, which corresponded to knick lines, and 
slope angles from 35° to 50° were other topographic features 
closely associated with landslide occurrence; this finding was 
consistent with a previous field investigation of post-seismic 
landslides in the same region [6]. A profile curvature < -4 
corresponded to abrupt profile changes, such as cliff tops. Positive 
contrasts for the 0–4 plan curvature classes demonstrated concave 
slopes where landslides were likely to occur, whereas those > 4 
mainly indicated narrow ridges.  
Part of a post-seismic-slide susceptibility map is presented as an 
example in Figure 3. When using the DCI, the AUC values for 
training and testing slides were 0.79 and 0.72, respectively 
(Figure 4), which were within the range considered acceptable by 
the model [10]. In contrast, the AUC values for cases without DCI 
were 0.75 for training slides and 0.73 for testing slides (Figure 4). 
We obtained a slight improvement in the training data, but no 
improvement in the testing data upon incorporating DCI, despite 
the close association of the index with landslide occurrence 
(Table 1). This result can be partly explained by the manner in 
which the topographic features were represented by conditioning 
factors, and also by deficits in the bivariate model, which did not 
consider associations among controlling factors. In addition, a 
small number of landslide data, particularly in the testing dataset, 
disproportionately affected the modelling results. Further study 

 

Figure 4.  ROC curves calculated for (a) training and (b) testing slides. 

 

Figure 2.  Box plots of σs chg for the locations with cracks distinguished and 
undistinguished. The interquartile range is represented by the box. Upper 
whiskers: 1.5 times the interquartile range above the third quartile. Lower 
whiskers: 1.5 times the interquartile range below the first quartile. Outliers are 
plotted as dots. The horizontal line represents the median value of σs chg. 

Figure 3.  A part of susceptibility map for post-seismic slides. Areas of co-
seismic slides were omitted from the analysis. Susceptibility is categorized into 
5 classes, very high (10%), high (10%), moderate (20%), medium (20%), low 
(20%) and very low (20%).     
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using larger datasets is required to find the most appropriate 
combination of topographic factors and statistical model to 
increase the accuracy of post-seismic slide susceptibility 
assessments. Tectonic, seismic, lithological, climatic, and 
vegetation conditions should also be considered to extend the 
applicability of the model and help to prevent disasters caused by 
post-seismic landslides during restoration work undertaken after 
powerful earthquakes.   
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Table 1.  Contrast for conditioning factors. 
Conditioning 

factor class W+ W- contrast 

DCI －0.2 -0.440  0.673  -1.113 
  0.2－0.4 0.499  -0.193  0.692 
  0.4－0.6 0.968  -0.090  1.057 
  0.6－ 1.899  -0.041  1.940 
Slope angle 
(degree) －20 -2.184 0.098  -2.283 

  20－25 -1.503 0.067  -1.570 
  25－30 -0.696  0.066  -0.762 
  30－35 -0.075  0.013  -0.089 
  35－40 0.329  -0.091  0.420 
  40－45 0.568  -0.146  0.714 
  45－50 0.371  -0.047  0.418 
  50－ -0.005 0.001  -0.005 
Plan 
curvature －-4 -1.760  0.074  -1.835 

  -4－-2 0.032  -0.004  0.036 
  -2－0 -0.261  0.082  -0.342 
  0－2 0.320  -0.193  0.513 
  2－4 0.326  -0.056  0.382 
  4－ -0.520  0.041  -0.561 
Profile 
curvature －-4 -1.252  0.036  -1.289 

  -4－-2 0.469  -0.060  0.528 
  -2－0 0.449  -0.387  0.835 
  0－2 -0.424  0.193  -0.617 
  2－ -1.422  0.098  -1.520 

TWI －2 0.050  -0.042  0.091 
  2－4 -0.059  0.034  -0.092 
  4－6 0.236  -0.042  0.277 
  6－ -1.378  0.038  -1.415 
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