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Abstract—This study aims at identifying a set of land-surface 

variables (LSVs) that enable consistent results in landslide 

modelling, within the context of automatic landslide mapping. The 

experiments were conducted in six study areas in Japan, Romania 

and USA. From an initial set of 24 LSVs, the most consistent 

predictors of landslide scarps in all study areas were selected 

through correlation analysis and variable importance investigation: 

negative topographic openness (radius 1500 m), slope height, and 

slope gradient. These three LSVs were further employed to model 

scarps’ presence/absence with logistic regression. The results were 

compared against logistic regression models built on: 1) the best 

combination of locally fit LSVs (variable number of predictors, 

ranging from two to five across study areas), which was determined 

with backward stepwise logistic regression, and 2) a number of six 

variables reported in literature to best describe terrain properties. 

The predictive performance of the model built on the three LSVs 

came close to 1) and exceeded it in two cases, and outperformed 2), 

except for two cases. We conclude that negative topographic 

openness, slope height, and slope, which account for scarps shape, 

position on the slope, and landsliding favorability respectively, have 

a potential of generalization across landscape conditions in the 
prediction of scarps presence/absence. 

I. INTRODUCTION 

Data-driven landslide modelling relies mainly on land-surface 

variables (LSVs) for automatic mapping, as well as for 
susceptibility assessment [1]. While LSVs are easy to obtain 

form Digital Elevation Models (DEMs), a consistent approach in 

selecting the ones that are the most relevant to landslides is still 

missing [2]. This lack of consistency makes the results of 

modelling dependent on the skills and experience of the analyst, 

thus hampering the comparison between models [3] and 

preventing their transferability to other areas [4]. 

Here we report preliminary results of an experiment that aims 

at finding a set of LSVs capable to help in identifying landslide 

scarps in various landscape conditions.  

II. STUDY AREAS 

The tests were conducted in six study areas, of different 
environmental conditions. Three study areas are located in the 
Buzău county, Romania, at the contact between the Romanian 
Carpathians and the Subcarpathian Hills, covering 121.7 km2 
(B1), 261.6 km2 (B2) and 85.1 km2 (B3) respectively. The annual 
mean temperature in these areas varies between 4-9°C and the 
total annual precipitation between 800-1200 mm. These areas are 
prone to numerous landslides, caused on the one hand by a clay 
rich substrate and high amount of precipitation, and on the other 
hand by their location in one of the European seismic hotspots.  

Two study areas are located in the southeast of Honshu 
Island, Shizuoka Prefecture, Japan. The areas are humid and 
temperate with annual rainfall of approximately 2100 mm and 
annual mean temperature of 15°C. They are located in a tectonic 
active zone dominated by medium and high slopes, recording 
numerous landslides. One area covers 35.9 km2 (J1) and the 
second one, 82.5 km2 (J2). 

The sixth study area (U), located in Utah, USA, has a 
relatively homogeneous lithology dominated by mixed-clastic 
and limestone deposits and covers an area of 299.2 km2. The area 
receives on average 560-600 mm of annual precipitation that falls 
primarily as snow, while temperatures typically range from -11 to 
27°C. 
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III. METHODS 

A. Data 

In the Buzău study areas there are available databases of 
landslide scarps compiled from different sources, such as archive 
data, detailed geomorphological field mapping, local authority 
databases, digital stereographic photo interpretation using color 
aerial ortho-photographs [5].  

For the Japanese study areas we used inventories of landslide 
scarps provided by the National Research Institute for Earth 
Science and Disaster Resilience, Japan (NIED) [6-8].  

In Utah we used the Landslide Inventory Polygons developed 
by professional scientists from Utah Department of Natural 
Resources and Utah Geological Survey. The polygons were built 
using LiDAR, stereo aerial photography, other data, and field 
reconnaissance. 

In order to avoid differences in modelling results caused by 
differences in sampling intensity, the existing databases were 
reduced to contain approximately the same number of scarps. 
One point was randomly selected within each landslide scarp, 
and the same number of points was also randomly selected 
outside scarp polygons as absence data. The databases for each 
study area, containing between 204 and 220 points, were split 
into training (70%) and test (30%) subsets. 

Besides landslide inventories, Shuttle Radar Topography 
Mission (SRTM) 1 arc second (ca. 30 m) digital elevation model 
(DEM) was available at the US Geological Survey website and 
was downloaded from the USGS Earth Explorer Interface. The 
DEM resolution is suitable for this analysis, since the average 
size of scarps is 14.9, 9.96 and 4.18 ha in B1, B2, B3, 
respectively, 2.26 ha in J1, 2.58 ha in J2 and 3.24 ha in U. 

B. Land-surface variables 

A number of 24 LSVs, which have been predominantly used 
in landslide modelling, were derived from DEM. To avoid 
multicollinearity of variables we conducted a correlation analysis, 
to retain only the non-correlated terrain variables. The threshold 
for variable removal was set to 0.6 for correlation coefficient.  

Subsequent processing was conducted in order to ensure that 
all terrain variables have a normal distribution [9].  

C. Variable importance analysis 

In order to select a generalizable subset of terrain variables 
for landslide modelling, the uncorrelated variables were 
subjected to variable importance (VI) analysis using Random 
Forest (RF) [10]. VI analysis was conducted with randomForest 
package in R [11] and was based on the mean decrease in 
accuracy (MDA) algorithm implemented by Liaw and Wiener 
[12]. 

D. Landslide modelling 

The identified generalizable subset of variables, arising as 
important predictors in all study areas were used subsequently to 
conduct landslide modelling (named LSM_VI). 

To assess the performance of the identified set of LSVs, we 
conducted analyses based on the best model specific to each 
study area, identified with backward stepwise logistic regression 
(named LSM_best_model). 

In addition, we tested the set of generalizable LSVs against 
six terrain variables (named LSM_tasse), proposed by Lecours et 
al. [13] to be used in environmental studies, as the six variables 
capture more than 70% of the topographic structure of an area. 
These variables are: relative difference to mean elevation value, 
standard deviation of DEM, easterness, northerness, local mean 
and slope. 

Logistic regression was used for modelling and the results 

were evaluated both in terms of model fit using training data and 

model prediction performance using test data. The model fit was 

evaluated through the Akaike information criterion (AIC), and 

the prediction performance through overall accuracy and area 

under the receiver operating characteristic (ROC) curve (AUC) 

measures. 

IV. RESULTS AND DISCUSSION 

A. Correlation analysis 

Correlation analysis revealed 14 non-correlated LSVs: 

elevation, slope, profile curvature, plan curvature, convexity, 

easterness, northerness, mid-slope position, negative 

topographic openness, positive topographic openness, slope 
length, slope height, texture, valley depth. 

B. Selection of a generalizable set of LSVs 

Fig. 1 shows the results of VI analysis in the six study areas. 

The first variable that showed as important predictor in all study 

areas is negative topographic openness (radius 1500 m), with 

MDA values higher than 10%. Slope height stood out also as 
important predictor in five out of six study areas, with MDA 

larger than 10%. In B3, slope height recorded a MDA value of 

8.7, however being one of the most important five variables. 

Slope also recorded high MDA values, in U recording the 

highest value within all tests (38%), and over 10% in B2 and B3. 

Slope was also an important predictor in B1 with a MDA value 

of 8.1%. These three variables were thus selected as the 

generalizable set for LSM_VI model. We interpret negative 

openness as a generalized concavity that accounts for the shape 

of the landslide scarps; slope heights would describe the scarp 

position, and slope gradient is well known as the main 
topographic predisposing factor for mass movements.   
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Figure 1.  Variable importance expressed as mean decrease in accuracy in the six study areas. 

 

Other variables were more location specific, highlighted as 

important predictors only in one to three study areas. For 

example, convexity, elevation and valley depth recorded MDA 

values higher than 10% in B1, midslope position and 

northerness in B2, positive openness in J1, elevation and plan 

curvature in J2, and profile curvature in U. Other terrain 
variables like easterness, slope length and texture were among 

the least important variables in all study areas. 

C. Models evaluation 

In terms of model fit measured by AIC, our proposed model 

was relatively similar to the best model, losing between only 7.4 

in study area U and 28.8 in B3. The other study areas recorded 

AIC value larger by less than 20. Comparing our proposed 

model with LSM_tasse, in five out of six cases LSM_VI model 

was better with AIC value lower by 2.6, 4.6, 9.1, 13.7 and 14.2. 

In study area B2, LSM_tasse model was better than our model, 

by 12.4 (Table 1).   
Overall accuracy of LSM_VI recorded values lower than the 

best model in four out of six cases, however by only 1-7%. In 

study areas J1 and B3 our proposed model performed better than 

the best model, by 2 and 12% respectively. In four out of six 

cases our proposed model overperformed LSM_tasse, recording  

overall accuracies higher by 3, 5, 11 and 15%. In study area U 

the models had the same accuracy, 70%. Only in one case, B1, 

LSM_tasse performed better than LSM_VI, by 12%. The 

absolute values of overall accuracy for LSM_best_model range 

between 52 and 74%, for LSM_VI between 56-70%, and for 

LSM_tasse between 53-70% (Table 1). 
In terms of AUC, the best model performed better than our 

proposed model only in two cases (J2 and B1), by 0.01 and 0.1, 

in other two cases the models performing identical (B2 and B3), 

with an AUC of 0.65. In J1 and U, LSM_VI performed better 

than the best model, by 0.09 and 0.03. Compared to LSM_tasse, 

our proposed model recorded higher AUC values in five out of 

six cases, with differences ranging between 0.01 and 0.16. Only 

in study area B1, LSM_tasse recorded an AUC higher than 

LSM_VI, by 0.12. The absolute values of AUC ranged between 

0.63-0.82 for LSM_best_model, 0.63-0.83 for LSM_VI and 

0.63-0.81 for LSM_tasse (Table 1). 
The results should be interpreted also regarding the number 

of variables, being well known that between two similar models, 

it should be preferred the simpler one. While the LSM_VI used 

three terrain variables and LSM_tasse used six variables, the 

best model used various numbers of variables, ranging from 2 in 

J1 to 5 in B2.  
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Table 1. Models fit and prediction performance assessment. 

Study 

area 

 AIC Overall accuracy AUC 

Var. no.  

best model 

LSM_best_ 

model 
LSM_VI 

LSM_ 

tasse 

LSM_best_ 

model 
LSM_VI 

LSM_ 

tasse 

LSM_best_ 

model 
LSM_VI 

LSM_ 

tasse 

J1 2 186.70 197.30 206.40 0.52 0.64 0.53 0.63 0.72 0.64 

J2 4 178.60 188.10 202.30 0.74 0.70 0.55 0.82 0.81 0.65 

B1 3 167.80 183.90 188.50 0.63 0.56 0.68 0.73 0.63 0.75 

B2 5 168.30 185.30 172.90 0.64 0.59 0.56 0.65 0.65 0.63 

B3 4 158.70 187.50 201.20 0.62 0.64 0.59 0.65 0.65 0.64 

U 4 147.80 155.20 157.80 0.71 0.70 0.70 0.80 0.83 0.81 

V. CONCLUSIONS 

We found three LSVs with the potential of describing 

satisfactorily landform scarps in various landscape conditions. 

Negative topographic openness, slope height, and slope account 

for scarps shape, position on the slope, and landslide favorability 

respectively.  

The logistic regression model based on these three LSVs 

produced results comparable to models built on locally 
calibrated LSVs, as well as to a model built on a double number 

of LSVs. 

REFERENCES 

[1] Reichenbach, P., et al., A review of statistically-based 

landslide susceptibility models. Earth-Science Reviews, 

2018. 180: p. 60-91. 

[2] Budimir, M., P. Atkinson, and H. Lewis, A systematic 

review of landslide probability mapping using logistic 

regression. Landslides, 2015. 12(3): p. 419-436. 

[3] Guzzetti, F., et al., Landslide hazard evaluation: a 

review of current techniques and their application in a 
multi-scale study, Central Italy. Geomorphology, 1999. 

31(1-4): p. 181-216. 

[4] Cama, M., et al., Improving transferability strategies 

for debris flow susceptibility assessment: Application to 

the Saponara and Itala catchments (Messina, Italy). 

Geomorphology, 2017. 288: p. 52-65. 

[5] Sîrbu, F., et al., Scaling land-surface variables for 

landslide detection. Progress in Earth and Planetary 

Science, 2019. 6(1): p. 44. 

[6] Shimizu, F., et al., Landslide maps series 14 

“Shizuoka”. Technical Note of the National Research 

Institute for Earth Science and Disaster Resilience, p 

221, 2002. 
[7] Uchiyama, S., et al., The NIED landslide mapping 

team. 2012. 

[8] Oyagi, N., S. Uchiyama, and M. Ogura, Explanations 

of landslide distribution maps. Technical note of the 

National Research Institute for Earth Science and 

Disaster Resilience, 2015. vol 394, pp 391-314. 

[9] Csillik, O., I. Evans, and L. Drăguţ, Transformation 

(normalization) of slope gradient and surface 

curvatures, automated for statistical analyses from 

DEMs. Geomorphology, 2015. 232: p. 65-77. 

[10] Breiman, L., Random forests. Machine learning, 2001. 
45(1): p. 5-32. 

[11] R Core Team, R: A language and environment for 

statistical computing. R Foundation for Statistical 

Computing. 2015: p. Vienna, Austria, http://www.R-

project.org/. 

[12] Liaw, A. and M. Wiener, Classification and regression 

by randomForest. R news, 2002. 2(3): p. 18-22. 

[13] Lecours, V., et al., Towards a framework for terrain 

attribute selection in environmental studies. 

Environmental Modelling & Software, 2017. 89: p. 19-

30. 

 

Geomorphometry 2020 Dornik and others

165

http://www.r-project.org/
http://www.r-project.org/

