
    

   

A data-driven method for assessing the probability for 

terrain grid cells of initiating rockfalls on a large area 

Massimiliano Alvioli§, Michele Santangelo, Federica Fiorucci, Mauro Cardinali,  

Ivan Marchesini, Paola Reichenbach, Mauro Rossi 

Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche,  

Via Madonna Alta 126, I-06128 Perugia, Italy  
§massimiliano.alvioli@irpi.cnr.it 

 

 
Abstract—Rockfalls are one harmful kind of landslide, due to their 

rapidity, destructive potential and high probability of occurrence on 

steep topographies, often found along transportation corridors. 

Various factors can trigger rockfalls, including intense rainfall and 

seismic activity, and diverse phenomena affect their occurrence, like 

rock weathering and fracturing. Existing approaches for the 

assessment of rockfall susceptibility range from purely 

phenomenological to purely deterministic, physically based methods. 

A common requirement for many approaches is the need to locate 

the potential point locations of source areas, often located uphill on 

cliffs. Application of a physically based model, in particular, allows 

the calculation of material runout stemming from rockfalls 

originating from such point locations. In this work, we propose a 

method for the location of rockfall source points, on a digital 

elevation model, suitable for large areas. We deem the method as 

data-driven, because it relies on expert delineation of potential 

source areas from Google Earth images in few sample locations, 

representative of the study area at large. We measure the slope 

distribution of grid cells encompassed by expert-mapped source 

areas, and generalize the distribution of sources to the whole of the 

study area. We apply the method to a corridor of about 17,000 km in 

length and varying width, containing the entire Italian railway 

network. The map of source areas represents the main input for a 

physically based simulation of rockfall trajectories with the model 

STONE, and likely of other similar physically based or 

phenomenological models for rockfall runout assessment. 

I.  INTRODUCTION 

Location of potential sources of rockfalls requires expert 
analysis of the cliffs in the study area, which is typically a time 
consuming and expensive procedure. This makes identification of 
potential sources a limiting factor for systematic rockfall studies 
over large areas. Existing analyses are limited to individual 
hillslopes or portions of slopes along transportation corridors of 
limited length. Moreover, a reliable extraction of potential sources 
requires availability of high-resolution images and digital 
elevation models (DEMs), which allows observation of existing 
sources [1-2], or continuous monitoring of slopes with various 

technologies, typically feasible in small areas [3, 4]. Moreover, 
once a potential source is located on a digital model, it is desirable 
to assign a probability for the likelihood of that location to evolve 
into an actual rockfall [5].  

The common way of straightforwardly selecting source areas 
is to establish a slope threshold above which any grid cell acts as 
a potential rockfall source. In this work, we describe a method to 
both locate and assign a probability of failure in a homogeneous 
way in a very large area.  

 The procedure presented here represents nothing but a starting 
point for the assessment of rockfall susceptibility, or rockfall 
hazard, depending on the additional available data and purpose of 
the study [6]. In fact, for such purposes, we run STONE, a 
kinematic model to simulate rockfall trajectories originating from 
given source pixels on a digital topography [7]. Additional inputs 
of the model are friction and energy restitution grids of parameters, 
initial velocity of the simulated falling boulders, and other optional 
quantities [1, 7-9].  The model assumes point-like boulders, 
considering them in a state of either free fall, bouncing or rolling, 
at each time step of the simulation. Trajectories end when the 
boulders exhaust their initial kinetic energy due to simulated 
friction with the terrain (air drag is neglected). 

II. METHODS 

In this work, we performed the following steps to calculate the 
probability for grid cells to initiate rockfalls on a 10 m-resolution 
DEM of Italy (TINITALY) [10]: 

1) selection of a 1 km-wide buffer around the railway track; 

2) selection of the set of slope units (SUs) [11, 12] intersecting 
the buffer; 

3) expert mapping of a subset of potential rockfall source areas 
within the selected SUs, in regions we considered 
representative of the conditions that could trigger rockfalls in 
the particular topographic unit [13] under investigation; 
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4) development of a statistical procedure to generalize the source 
areas of point 3) to different grid cells, with the same 
characteristics in terms of local terrain slope, within the same 
topographic unit [14]; 

5) visual analysis of the source areas map obtained from the 
statistical procedure of point 4), in relation to the railway 
track, and assimilation in the final source area map of potential 
source areas left out by the procedure; 

6) additional set of analysis, not described here, necessary for 
execution of the program STONE [7]. 

In point 2) above, we introduced the use of slope units. A 
national SU map is available for the whole of Italy [11, 12]. An 
extension of the method and software first described in Ref. [14] 
allowed preparation of such map. Slope units are suitable for 
landslide modeling [14, 15], particularly where available data is 
heterogeneous [15]. In our case, using SUs also allows to put a 
well-defined spatial boundary around the railway track, with some 
confidence that the runout of simulated rockfalls stays within the 
boundary. 

In point 3) above, we introduced topographic units of Italy. We 
adopted a (slightly) revised version of the units from Ref. [13], as 
in Ref. [12]. This step allows selection of representative areas for 
expert mapping in each of the 29 different units, and statistical 
generalization of them within physiographical homogeneous 
areas. Table I lists the total area of each topographic unit and, in 
each of them, the area covered by slope units selected for 
simulation. 

Point 4) consisted in a regression of the distribution of the 
number of grid cells encompassed by the expert-mapped source 
areas as a function of their slope, S, using a suitable functional 
form. We opted for a non-linear quantile regression with a single 
parameter probability function PFIT, of the following form: 

𝑃𝐹𝐼𝑇(𝑆) = 𝑐 (
𝑆

90
)

4

,                                  (1) 

where S is expressed in degrees and c is the regression parameter. 
We assigned values of probability with a lower bound, set as the 
minimum between 0.1 and the value that provides a map in which 
80% of the mapped sample has non-null probability. 

III. RESULTS AND CONCLUSIONS 

The procedure described by the enumerated list in Section II 

applies to each of the topographic units adopted in this work. 

Table I and Fig. 1 summarize the results of the procedure.  

The statistical procedure produces a 10 m x 10 m grid map 

aligned with the TINITALY DEM used in this work. We assigned 

grid cells with the probability for a rockfall trajectory to originate 

from within that specific location. Thus, cell-by-cell comparison 

between modeled probability and expert-mapped source areas is 

meaningful. To this end, we calculated the percentage of grid cells 

encompassed by polygons representing mapped source areas in 

which the statistical procedure assigned non-null probability, and 

the number of cells with values of probability larger than 0.8. 

Table I lists results for each of the topographic sections in 

which we run the statistical procedure independently. 

ZONE 

CODE 

Total Area  
[km2] 

SU Area 

[km2] 

HR 

(Total) 

HR 

(P > 80%) 

1.1 16,274 1,590 77% 0.13 

1.2 35,735 2,620 80% 0.19 

2.1 32,702 373 80% 0.27 

2.2 9,426 164 11% 0.06 

2.3a 3,103 458 75% 0.16 

2.3b 1,298 88 - - 

3.1 2,322 332 16% 0.00 

3.2 3,991 1,778 51% 0.04 

4.1 22,393 2,067 78% 0.07 

4.2 16,835 1,894 79% 0.09 

4.3 4,920 457 77% 0.13 

4.4 8,097 1,585 75% 0.14 

4.5 12,890 1,379 79% 0.18 

4.6 6,203 383 50% 0.03 

4.7 5,337 598 59% 0.09 

4.8 4,262 511 48% 0.03 

5.1 25,346 2,086 58% 0.12 

5.2 6,136 972 79% 0.05 

5.3 6,375 859 62% 0.04 

6.1 9,023 930 78% 0.10 

6.2 20,236 706 44% 0.11 

6.3 1,731 - - - 

7.1&7.2 14,285 2,195 56% 0.12 

7.3 5,321 691 46% 0.09 

7.4 1,499 210 80% 0.28 

8.1 16,404 428 63% 0.14 

8.2 258 - - - 

8.3 1,946 4 58% 0.21 

8.4 2,844 42 76% 0.22 

Table I. Numerical evaluation of the statistical generalization for the 
probability of grid cells to initiate a rockfall trajectory (see text). We 
also list the total area of each section (Zone code, Ref. [10, 12]) and 
the area occupied by selected slope unit area. 

We evaluated the agreement between expert-mapped areas 

and statistical generalization by hit rate, HR = TP = (TP + FN), 

where TP stands for true positives and FN for false negatives.  

Figure 1 shows a sample subset of the results, in four of the 29 

units. The figure shows the empirical probability for a grid cell of 

initiating a rockfall, represented by slope values calculated for the 

set of 10 m x 10 m grid cells encompassed by the expert-mapped 
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polygons (green dots).  The figure also shows different curves, 

corresponding to the following quantities.  Blue curve with 

confidence band: a non-linear fit with an expression similar to Eq. 

(1), but with the exponent also being a fitting parameter. Black 

curve: piecewise average of the data values.  Red curve: the 90% 

non-linear quantile regression, i.e. the function of Eq. (1) with a 

value of c that leaves 90% of the data points below the curve. Our 

choice falls on the last quantity, as anticipated, because both the 

other ones would assign many cells with large values of slope 

with very small probability of generating rockfalls. We 

empirically observed that it is not the case. 

Numerical results listed in Table I indicate that in three of the 

units the map produce by the proposed procedure accounts for 

80% of the mapped source areas in three topographic units; the 

agreement is poor (less than 16%) in two units and low (less than 

50%) in four units. We show no results for a few units, in which 

we do not expect rockfalls at all (no mapped source areas), or they 

do not overlap with the railway track. 

We can make sense of the low values of hit rate appearing in 

Table I with the following considerations. We hypothesized a 

relationship between the probability of a grid cell of initiating a 

rockfall and local slope. This represents a good compromise 

between an acceptable overall time needed for the procedure over 

a large study area and a realistic product, for our purposes, but it 

certainly does not embed all of the local terrain properties of that 

influence the expert criteria applied for mapping potential source 

  

  
Figure 1. Example result of statistical assessment of the probability of a grid cell with given slope to represent a source area for rockfalls. Data 

(green dots) and numerical models (curves) correspond to four out of the 29 topographic from Ref. [10, 12], adopted in this work. The red curve, a 

non-linear 90% quantile regression corresponding to Eq. (1), is the adopted model. The horizontal line represents the probability limit under which 

probability is set to null. 
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areas. Errors may also arise from the discrepancy between the 

DEM used in the analysis and the apparent resolution of Google 

Earth imagery, especially in the locations with largest relief, in 

which we are mostly interested. Eventually, we used a DEM 

generated from a triangulated irregular network (TIN); visual 

inspection of a shaded relief generated form the DEM highlighted 

locations in which the triangulation used to prepare the DEM is 

manifest, which surely affects the slope map nation-wide. 

Numerical results in Table I correspond to comparisons 

limited to the slope units overlapping with a buffer along the 

national railroad network. Applicability of this method for a 

national rockfall susceptibility map remains to be investigated. 

Preliminary results of simulations of rockfall trajectories with 

the STONE program were compared with mapped rockfalls in the 

Italian Inventory of Landslide Phenomena Inventory of landslide 

phenomena, known as IFFI [17, 18]. The IFFI inventory contains 

over 620,000 landslide polygons, of which 4,051 correspond to 

rockfalls. Rockfall polygons contain both source and runout 

areas. The comparison shows nice agreement with empirical 

evidence. Detailed results, and assessment of their impact on the 

national railway network, will be reported elsewhere. 
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