
  

 

Can multiscale roughness help computer-assisted 

identification of coastal habitats in Florida? 

Vincent Lecours§ & Michael C. Espriella 

School of Forest Resources & Conservation  

University of Florida 

7922 NW 71st Street, Gainesville, Florida, USA, 32606   
§ vlecours@ufl.edu 

 
Abstract—Coastal habitats are of natural, economic, and cultural 

importance in Florida, and there is a need for effective approaches 

to map and monitor them. Geographic Object-Based Image Analysis 

(GEOBIA) was previously applied to an orthomosaic and a Digital 

Surface Model (DSM) to automatically delineate oyster reef, salt 

marsh, and mudflat habitats in Little Trout Creek, Florida. Here we 

evaluated whether a multiscale measure of roughness has the 

potential to improve this GEOBIA workflow in this context where 

oysters are spectrally similar to the two other habitat types. Our 

results show that multiscale roughness can be used to distinguish the 

different coastal habitat types studied. The level of roughness of 

mudflats is usually higher at broader scales, and the magnitude of 

that roughness is relatively small. Marsh roughness was highest at 

finer scales, and its magnitude was higher compared to other habitat 

types likely due to marshes’ vegetation cover, which is captured in 

the DSM. The highest magnitudes of roughness for oysters were 

smaller than, and found at slightly broader scales than, the highest 

roughness for marshes. Our results were strongly affected by edge 

effects because the studied habitats are discrete and discontinuous. 

Multiscale roughness has the potential to help delineate coastal 

habitats in Florida, but more work is needed to better understand 

the multiscale topographic patterns of different coastal habitats in 

Florida and elsewhere.  

I.  INTRODUCTION 

Coastal habitats like oyster reefs and salt marshes provide 
economic opportunities as well as vital ecosystem services such as 
shoreline erosion control, habitat and nursery for a variety of 
species, and water filtration. However, many of these ecosystem 
services are threatened by natural and anthropogenic factors (e.g., 
coastal development, sea-level rise, hurricanes). Mapping and 
monitoring coastal habitats are critical to improving scientific 
understanding of the complex dynamics of coastal ecosystems, to 
better inform management, planning, and conservation efforts.  

Florida’s coastal waters are the most economically valuable, 
have the highest recreational use, and have one of the highest 
concentrations of coastal communities in the United States. At a 
2007 workshop, regional, state, and federal partners concluded that 

although mapping coastal resources was a top priority, the lack of 
a standard, reproducible approach was hindering broad-scale 
efforts [1]. With the increased likelihood of extreme weather 
events [2] that have the potential to impact coastal habitats in 
Florida [3], there is a critical need to develop an effective and 
reproducible mapping and monitoring workflow that can be used 
to answer questions in a variety of contexts (e.g., sea-level rise, 
community resilience, hurricane impact assessments). 

In a recent article, Espriella et al. [4] proposed a reproducible 
approach to detect and delineate three types of coastal habitats – 
oyster reefs, salt marshes, and mudflats – in imagery collected with 
Unoccupied Aircraft Systems (UAS). The approach is centered on 
a two-level Geographic Object-Based Image Analysis (GEOBIA) 
[5] that first identifies and extracts water areas from the data before 
classifying the remaining objects into their respective habitats. 
Both the RGB mosaic and the Digital Surface Model (DSM), 
produced using structure-from-motion photogrammetry, were 
used as inputs. However, with an overall classification accuracy of 
79%, that GEOBIA alone may not be robust enough for accurate 
temporal monitoring. Oysters had the lowest overall separability 
from the other habitats, which is problematic from a management 
perspective; oysters are one of the most important living coastal 
resources actively managed in the Gulf of Mexico, are suffering 
from major declines in the area, and thus are of particular interest. 

In nature, oyster reefs are more structurally complex than 
marsh and mudflats, at multiple scales. Therefore, we hypothesize 
that geomorphometry can provide a means to help differentiate 
these habitats from each other. While Espriella et al. [4] derived 
local measures of terrain attributes (e.g., rugosity, relative 
position) at multiple independent spatial scales [6] using relatively 
few search neighborhoods [7], their feature-space optimization to 
select the variables best fit to recognize the different habitats did 
not identify any DSM-derived variables as being relevant. Here, 
we evaluate the potential of a multiscale measure of roughness [8] 
– as opposed to independent measures of roughness derived at 
multiple scales – to help distinguish oyster reefs, salt marshes, and 
mudflats from each other.  
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II. METHODS 

UAS imagery was collected on December 8th, 2018 at low tide, 
at the mouth of Little Trout Creek (29° 15’ 34.98” N, 83° 4’ 29.68” 
W), on the west coast of Florida (Fig. 1). The imagery was 
collected at nadir using a DJI Inspire 2 equipped with a Zenmuse 
X7 35 mm RGB sensor. The UAS was flown 60 m above ground 
level, with an 80% along-track overlap and 75% across-track 
overlap. Four checkered targets were evenly distributed across the 
scene and located using a Trimble 5800 real-time kinematic 
positioning system. In addition to the orthomosaic, a DSM was 
produced using structure-from-motion photogrammetry in Pix4D 
Mapper v. 4.2.27. The total area surveyed covered approximately 
0.116 km2 and provided data with a 0.66 cm spatial resolution  
(Fig. 2), with a root mean square error of 0.3 cm in longitude and 
latitude, and 0.1 cm in elevation for the residuals of control points. 

 

FIGURE 1. LOCATION OF THE STUDY AREA: LITTLE TROUT CREEK, FLORIDA, USA. 

The GEOBIA ruleset of Espriella et al. [4] was applied to the 
data. The resulting classification was used to extract 37 oyster 
reefs, 22 salt marshes, and 33 mudflats areas from the DSM. The 
areas were selected because they were fully encompassed within 
the extent of the data (i.e., no areas from the boundaries of the 
mosaic). Each extracted area was entered in the “Multiscale 
Roughness” tool of WhiteboxTools v. 1.1.0 [9], with search 
neighborhood radii ranging from 1 grid cell to 9,751 grid cells, 
which corresponds to the length of the longest feature (a salt marsh 
of about 64 m; cf. center of Fig. 2 and Fig. 3). The tool produced 
two main outputs: a raster that indicates, for each pixel, the size of 

the search neighborhood at which the measured roughness was the 
highest, and a raster displaying the magnitude of the measured 
roughness at that scale. Descriptive statistics of the two output 
types were calculated for each habitat type.  

 

FIGURE 2. UAS IMAGERY COLLECTED AT LOW TIDE ON DECEMBER 8TH, 2018. 

III. RESULTS AND DISCUSSION 

Figure 3 presents the GEOBIA classification results and the 

scale and magnitude outputs for all the studied habitats. The 

spatial distributions of the scale and magnitude values seem to be 

influenced by the geometry of the features and the quality of the 

DSM. For instance, high-magnitude values were found on long 

and narrow features, and broader-scale values were found in areas 

of interpolation artifacts where the presence of water affected 

DSM production. In general, magnitude is the most promising 

output to differentiate the three studied coastal habitats (Fig. 3); 

patches of mud displayed a much lower magnitude than other 

habitat types, which was expected considering the less complex 

nature of mudflats, and salt marshes displayed a much higher 

magnitude than other habitat types, likely because of the presence 

of a vegetation cover captured in the DSM. Oyster reefs, which 

are the most heterogeneous habitats, had intermediate magnitudes 

of roughness at intermediate scales. 

These observations are confirmed by the analysis of the 

statistical distributions of scale and magnitude (Tab. 1). On 
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average, the scale of maximum roughness was broader for 

mudflats than for oysters and marshes. However, averages are 

likely biased by outliers caused by edge effects: the skewness of 

the distributions for scale shows that they are highly skewed for 

marsh and oysters, and moderately skewed for mudflats. 

Distributions of scale for marshes and oysters are leptokurtic, and 

that of mudflats is platykurtic. The distributions of magnitudes for 

mudflats and oysters are heavily skewed, with a high and sharp 

peak and long and fat tails caused by many outliers. The 

distribution of magnitudes for marshes is relatively symmetrical 

but platykurtic, with a short and thin tail. Given these results, we 

do not expect that the averages presented in Tab. 1 are fully 

representative. We adjusted them by manually removing outliers 

from the distribution and obtained revised averages for scale of 

1,231.66 (≈9.4 m) for marshes, 1,980.06 (≈19.6 m) for mudflats, 

and 1879.68 (≈15.0 m) for oysters. However, the median values 

suggest that patterns of highest roughness can be found at about 

1.5 m for marshes, 12.9 m for mudflats, and 5.3 m for oysters, 

which is more consistent with what can be observed in the field 

in terms of habitat complexity and habitat patch size. Setting these 

results into the natural context can thus serve as additional 

evidence that edge effects influenced some of the statistics (e.g., 

average, standard deviation). In fact, the cumulative distributions 

of scale for all habitat types showed a stabilization in slope 

between 125 and 400, which corresponds to 0.8 to 2.6 m, 

indicating that most of the high measured roughness would be 

found at scales finer than 3 m.  

 It is noteworthy that all habitat types reached a local peak of 

maximum roughness at search radii of 30 cells (oysters and mud) 

or 33 cells (marsh), which corresponds to 21±1 cm. While this is 

an interesting result, it should be interpreted with caution: given 

the different natures of the habitat types, it is improbable that they 

display local roughness at almost the same exact scale (with a 

precision of 6 mm). A possible explanation is that intrinsic noise 

is present in the DSM at this specific scale range and captured by 

the analysis. In terms of magnitude, the statistical distributions 

confirm that magnitudes of roughness are generally smaller for 

mudflats and higher for marshes. 

TABLE 1. DESCRIPTIVE STATISTICS OF THE SCALE AND MAGNITUDE OF THE 

MULTISCALE ROUGHNESS MEASURE FOR EACH HABITAT TYPE. 

 

This work is an initial exploration of the potential of measures 

of multiscale topographic patterns to help identify coastal 

habitats. However, limitations include the use of the results of an 

imperfect spectral-based GEOBIA classification to guide the 

selection of habitat features for this analysis. For instance, Fig. 4 

shows that one of the objects identified as marsh is partly 

misclassified: only the central section of this object is a vegetated 

salt marsh – the surrounding habitat is oysters. However, the 

entirety of this area was considered as marsh for the analysis 

because it was based on the objects defined and classified by the 

GEOBIA workflow. Both the scale and magnitude of the 

multiscale roughness captured that difference, with the marsh 

having a finer-scale roughness of higher magnitude than the 

surrounding oysters. This directly highlights the potential of these 

Marsh Mud Oyster Marsh Mud Oyster

Number of Cells 154,945,348 238,774,206 438,236,795 154,945,348 238,774,206 438,236,795

Minimum 1 1 1 3.90 2.18 3.31

Maximum 9,750 9,750 9,750 108.65 120.51 101.21

Average 1,428.40 2,973.09 2,276.70 21.34 7.90 10.77

Median 229 1,948 804 25.76 6.30 9.82

Standard Deviation 2,287.13 3,127.44 2,943.04 11.01 5.64 5.47

Variance 5,230,967.94 9,780,854.37 8,661,511.55 121.33 31.76 29.88

Skewness 2.00 0.87 1.30 -0.10 2.91 3.15

Kurtosis 6.19 2.51 3.48 1.77 14.55 17.43

Scale Magnitude

FIGURE 3. GEOBIA CLASSIFICATION, AND SCALE AND MAGNITUDE OF THE MULTISCALE ROUGHNESS MEASURE APPLIED TO THE EXTRACTED FEATURES. 
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measures to augment the GEOBIA and differentiate coastal 

habitats in Florida. 

Another limitation of this work is that each of the 92 features 

studied was analyzed independently, which artificially increased 

edge effects. The complex dynamics of this coastal ecosystem 

mean that oysters can be directly adjacent to mudflats and 

marshes. As such, analyzing a patch of multiple habitats as one, 

then separating it into different habitats post-analysis before 

computing statistics could have reduced the influence of edge 

effects. However, this would be very computationally intensive 

given the size of the DSM (24 GB).  

IV. CONCLUSIONS 

Coastal geomorphometry has recently been identified as a 

future application of geomorphometry that will present challenges 

due to the presence of features both over and under the waterline 

[10]. Here we presented such an application, and these challenges 

were highlighted by a strong influence of edge effects and feature 

geometry that artificially increased the average scale at which 

maximum roughness was observed and the average magnitude of 

that roughness. However, we concluded that mudflats display 

relatively smaller amplitudes of roughness over broader scales 

and that salt marshes display the highest roughness over relatively 

finer scales. Oyster reefs showed intermediate patterns of 

roughness, with both amplitudes and scales between those of the 

two other habitat types. While we hypothesized that oyster reefs 

would show the highest roughness at the finest scales, the finer-

scale patterns of salt marshes may be explained by the presence 

of characteristic vegetation on the marshes, which creates 

relatively high roughness patterns in the DSM. Future work 

should repeat the analyses using a Digital Terrain Model (DTM) 

instead of a DSM. In theory, the DTM would preserve the 

complex fine-scale structures of oyster reefs while omitting the 

vegetation over salt marshes that created local roughness. 

Denoising algorithms could also be applied to the models to 

ensure that the multiscale analyses capture the scales at which 

patterns are observed rather than the noise in the data. Finally, 

because we demonstrated that multiscale roughness shows 

potential to help differentiate coastal habitat types from each 

other, we recommend evaluating the suitability of other 

multiscale geomorphometric measures, such as multiscale 

topographic position [11], multiscale maximum spherical 

standard deviation [8], multiscale maximum difference from 

mean elevation [11],  and multiscale topographic anisotropy [12] 

for the identification of coastal habitats. 

REFERENCES 

[1] Robbins, L., S. Wolfe, E. Raabe, 2008. “Mapping of Florida’s coastal 
and marine resources: setting priorities workshop”. USGS Open-File 
Report, 1157, 32 p. 

[2] Gao, Y., J.S. Fu, J.B. Drake, Y. Liu, J.-F. Lamarque, 2012. “Projected 
changes of extreme weather events in the eastern United States based on a 
high resolution climate modeling system”. Environ. Res. Lett. 7, 1-12. 

[3] Unmenhofer, C.C., G.A. Meehl, 2017. “Extreme weather and climate events 
with ecological relevance: a review”. Philos. T. R. Soc. B. 372, 1-13. 

[4] Espriella, M., V. Lecours, P.C. Frederick, E.V. Camp, B. Wilkinson, 2020. 
“Quantifying intertidal habitat relative coverage in a Florida estuary using 
UAS imagery and GEOBIA”. Remote Sens. 12(4), 677, 1-17. 

[5] Blaschke, T., 2010. “Object based image analysis for remote sensing”. 
ISPRS J. Photogramm. Remote Sens. 65, 2-16. 

[6] Grohmann C.H., C. Riccomini, 2009. “Comparison of roving-window and 
search-window techniques for characterizing landscape morphometry”. 
Comput. Geosci. 35, 2164-2169. 

[7] Deng, Y., J.P. Wilson, 2008. “Multi-scale and multi-criteria mapping of 
mountain peaks as fuzzy entities”. Int. J. Geogr. Inf. Sci. 22, 205-218.  

[8] Lindsay, J.B., D.R. Newman, A. Francioni, 2019. “Scale-optimized surface 
roughness for topographic analysis”. Geosci. 9(7), 322. 

[9] WhiteboxTools, https://jblindsay.github.io/ghrg/WhiteboxTools/index.html 

[10] Lecours, V., M.F. Dolan, A. Micallef, V.L. Lucieer, 2016. “A review of 
marine geomorphometry, the quantitative study of the seafloor”. Hydrol. 
Earth Syst. Sci. 20, 3207-3244. 

[11] Newman, D.R., J.B. Lindsay, J.M.H. Cockburn, 2018. “Evaluating metrics 
of local topographic position for multiscale geomorphometric analysis”. 
Geomorphology 312, 40-50. 

[12] Newman, D.R., J.B. Lindsay, J.M.H. Cockburn, 2018. “Measuring 
hyperscale topographic anisotropy as a continuous landscape property”. 
Geosci. 8, 278. 

FIGURE 4. EXAMPLE OF ORTHOMOSAIC, DSM, AND THE SCALE AND MAGNITUDE 

COMPONENTS OF THE MULTISCALE ROUGHNESS MEASURE FOR ONE OF THE 22 SALT 

MARSHES, ONE OF THE 33 MUDFLATS, AND ONE OF THE 37 OYSTER REEFS STUDIED. 
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