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Abstract— The use of geomorphometric variables or, from a machine 

learning perspective, geomorphometric features, sometimes coupled 

with other remote sensing derived variables, is often adopted for the 

spatial prediction of geoenvironmental properties of interest (e.g. soil 

and geo-engineering mapping). In other circumstances, 

geomorphometric features are analyzed for unsupervised 

approaches in the context of landscape classification and pattern 

recognition. The detection of the relevant features and the distinction 

between redundant and irrelevant features is crucial both for 

improving prediction accuracy as well as for reducing computational 

cost. Moreover, the detection of relevant features improves the 

interpretation of studied processes. In this short paper, the 

potentialities of a new feature selection algorithm are evaluated in a 

supervised learning problem, tested on ad-hoc designed synthetic 

dataset. The feature selection algorithm adopted is a Sequential 

Forward Selection filter, based on a fractal measure of Intrinsic 

Dimension, relying on a generalization of the Morisita index. The 

synthetic data set, built from real topography, is characterized by 

challenging characteristics as for example a strong linear correlation 

between relevant features. The tests performed on the data set show 

that the algorithm correctly individuates the relevant features and 

the irrelevant ones. Moreover, the impact of subsampling on the 

feature selection algorithm has been tested, showing a stable 

response up to roughly the 10% of the original data set. The results 

of this preliminary study suggest that the algorithm is promising in 

the geomorphometric context and that it is worth to investigate 

further its applicability in geomorphometry. 

I.  INTRODUCTION 

The use of geomorphometric variables or, from a machine 
learning perspective, geomorphometric features (the two terms are 
used interchangeably in the text), sometimes coupled with other 
remote sensing derived variables, can be adopted for the spatial 
prediction of geoenvironmental properties of interest, for example 
in soil and geo-engineering mapping [1-3]. In other circumstances, 
geomorphometric features are analyzed via unsupervised 
approaches for landscape classification and pattern recognition 
(e.g., [4]). The detection of relevant and non-redundant 
geomorphometric features in these prediction tasks is crucial both 

for improving prediction accuracy as well as for reducing 
computational cost. Moreover, the selection of relevant features 
improves the interpretation of studied processes, shedding light on 
main influencing factors and/or processes. Feature selection and 
reduction are crucial when dealing with geomorphometric 
analysis. In fact, the quantitative analysis of digital elevation 
models (e.g., [5-6]) can generate high-dimensional datasets, i.e., 
characterized by a high number of geomorphometric features. This 
is partially related to the high number of morphometric variables 
and local statistical metrics (e.g., [7]) that can be computed. 
Another reason is related to the spatial-scale dependency of 
geomorphometric variables and of the related calculation 
parameters.  First, the various geomorphometric variables can be 
computed from different resolutions and smoothing of the input 
topography. Second, many geomorphometric variables and local 
statistical metrics have calculation parameters related to the spatial 
scale (e.g., the radius of a local search window) or to spatial 
directionality. 

Consequently, given the potentially high number of input 
geomorphometric features in unsupervised and supervised 
learning tasks, the discrimination between relevant/irrelevant 
features (in supervised setting) and of the redundant/non-
redundant features is of fundamental importance. The nonlinearity 
and the complexity of the potential interactions between 
geomorphometric features make difficult the application of 
standard parametric data reduction approaches, based for example 
on principal component analysis or on the linear correlation 
between variables. 

In this context, the recently developed fractal-based estimator 
of Intrinsic Dimension (ID, [8]), relying on a generalization of 
Morisita Index [9], is particularly promising. The authors of the 
new ID estimator developed a set of ID-based algorithms for 
feature selection both in unsupervised [10] as well as in supervised 
learning settings [11]. These tools are implemented in R 
programming environment [12] with a specific package; the 
algorithms have been designed taking into consideration 
computational efficiency and ease of use. 
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This short paper is part of a broader ongoing research exploring 
the application of these algorithms in geomorphometry both in 
unsupervised as well as supervised learning settings. The focus of 
this presentation is on the applicability of the approach in a 
supervised setting; in particular, the capabilities of the algorithm 
are tested considering an exemplary and demanding (from the 
predictive viewpoint) data set, built from real topography. 

II. INTRINSIC DIMENSION AND FEATURE SELECTION 

ID is strictly related to fractal dimension [8] and is an interesting 
parameter both for the analysis of spatial point patterns [13-14] as 
well as in the analysis of multidimensional data [10-11]. In the 
latter context, it is particularly useful because it allows to detect if 
the data lie on a lower-dimensional manifold in data space; when 
data lie on manifolds the ID dimension (not necessarily integer) is 
lower than the data dimension, i.e. the number of features.  The 
example of the “Swiss roll” [10] distribution is emblematic (figure 
1); even if the dataset has 3 variables, the true ID is 2, because the 
data lie on a 2D surface. The Morisita-based ID estimator is 
capable of estimating the ID from a multidimensional data set very 
efficiently and has been proven to be applicable in a wide set of 
settings, considering noise and under-sampling [8-10-11]. 

The estimation of ID is at the base of feature 
selection/reduction algorithms both in unsupervised (e.g., 
unsupervised clustering) as well as supervised (e.g., regression) 
settings. The key idea of these algorithms is based on the analysis 
of the impact of the single features on the ID estimation. For 
example, in an unsupervised setting, redundant features have a 
slight impact on ID estimated values. In a supervised setting, the 
input features can have different characteristics from the 
perspective of ID and in relation to the predictive capability of the 
output variable. Concerning ID, some of the input features can be 
redundant (e.g., strongly correlated) and hence leading to a lower 
ID respect the number of input features. Some other input features 
can be irrelevant, i.e., bring no information on output feature, and 
then contribute to the increase of the ID of the dataset. With real 
datasets based on geomorphometric features, redundant input 
features can be irrelevant as well as relevant The supervised 
feature selection algorithm of Golay et al. [11] is a Sequential 
Forward Selection filter, using the ID measure for discriminating 
relevant versus irrelevant features. The algorithm evaluates 
iteratively, for different subsets of input features, the index of 
dissimilarity (Diss), according to the equation: 

Diss(F,Y) = ID(F,Y) - ID(F)    (1) 

where F is a subset of the input features and Y is the output feature. 
When F is composed exclusively by all relevant features, the 
dissimilarity index should be theoretically zero. Differently, the 
irrelevant features have no impact in reducing the dissimilarity. 

 

Figure 1.  2D and 3D scatterplots of the “Swiss roll” synthetic dataset. The ID 

is 2, because data lie on a 2D surface. 

III. THE EXPERIMENTAL DESIGN 

      For testing the supervised feature selection algorithm, a 
synthetic data set has been built, based on real topography, from 
which 9 input features and one output feature have been derived. 
The DTM considered, derived from airborne Lidar technology, is 
representative of an alpine area with complex morphology (fig. 2, 
[15]) and has a grid of 350x350 pixels, with a resolution of 20 m. 
A synthetic dataset has been considered, given the necessity to 
know exactly the true relationship between input and output 
features, and test the impact of subsampling on the algorithm 
performance. The use of real topography and not of a pure 
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synthetic dataset generated from theoretical random distributions 
(e.g., [11]), is dictated by the need of testing spatial-statistical 
distributions representing real morphology, even if limited to an 

alpine setting. Another target of the built dataset is to analyze 
complex and non-linear relationships between input and output 
features, including potential redundancy between relevant 
features. This aspect is particularly relevant in geomorphometry, 
because of linear correlations between potentially relevant features 
can be present (e.g., linear correlation between roughness and 
slope, [4]). Moreover, it may happen that the set of relevant 
features have a predictive power only if used jointly and, 
conversely, the predictive capability of a single relevant feature 
can be marginal. From this viewpoint, topographic slope is a 
simple and convenient geomorphometric feature for building a 
synthetic data set for testing purposes. The slope (i.e., output 
feature) has been computed according to the simple equation 
reported in figure 3. Consequently, the relevant features are the 
elevations of the four nodes, here named as features Zn, Ze, Zs and 
Zw. The formulation of slope permits to model a complex non-
linear relationship, with high redundancy between relevant 
features, and in which the features are relevant only if used in 
combination. Then, four irrelevant and non-redundant features 
(named x1, x2, x3 and x4) have been generated via random 
shuffling of the elevation and consequently are characterized by 
the same statistical distribution of relevant features. Finally, a   
redundant (with x4) and irrelevant feature, named y1, has been 
generated considering the square of x4 plus a Gaussian random 
noise of zero mean and a standard deviation of 0.1 m. For the 
dataset, considering all features the ID is 5.62; excluding the 
output feature the ID is 5.2. It is worth noting, that a feature 
selection approach based on the analysis of the linear correlation 
between input features would induce to do not consider some of 
the relevant features. 

IV. PRELIMINARY RESULTS AND FUTURE DEVELOPMENTS 

The tests performed on the synthetic data set are highly positive: 

the algorithm correctly detects relevant input features and the 

irrelevant ones. The ID of the set of relevant features with and 

without the output feature is respectively 1.85 and 1.44; the ID of 

the set of irrelevant features with and without the output feature 

is respectively 4.71 and 3.74. The computational parameter to be 

set in the algorithm is the range of variation of the parameter L-1, 

controlling the size of the moving windows inherent to Morisita 

index calculation [8-9]. L is the length of the side of the search 

windows in the data space, being all features normalized in the 0-

1 interval. In this study, after different trials and following the 

approach suggested in [8], the integer values of L-1 were set to 

{10,11,…, 50}. The output is easily interpretable from the 

diagnostic curve (figure 4) reporting the impact of the single input 

features on the variation of the dissimilarity index. Only the 

features reducing the Dissimilarity index are relevant for the 

supervised learning.   

 

 

 

   Figure 2.  The DTM (Trentino, NE Italy) and the calculated slope. 

Slope (in the dataset expressed as percent rise) represents the output 
feature. 

 

Figure 3.  Simplified equation for computing the slope. 
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From the perspective of computational time the algorithm (the 
non-parallelized version has been tested) is quite fast; the 
application on the whole dataset required 5.3 minutes with a ten 
years old Processor Intel® Core™2 Quad Q8300 2.5 GHz and 12 
Gb of ram. 

A first test on the sensitivity of the algorithm to sampling density 

has been conducted. The impact of under-sampling has been 

explored by means of random sub-sampling (100 times) the 

original distribution with different levels of sub-sampling. Up to 

an under-sampling of 90 % (only 10% of the values retained), the 

algorithm is stable in terms of features selection, even if the 

diagnostic curve is characterized by a high variance.  

The results are promising even if more tests should be 

conducted to fully evaluate potentialities and limitations of the 

approach in geomorphometry [16]. The capability to handle 

complex non-linear relationships, the robustness to under-

sampling and the straightforwardness of the approach are 

appealing characteristics. A critical point, to be further 

investigated, is the sensitivity of the algorithm to the L-1 parameter 

in presence of features with statistical distributions characterized 

by high kurtosis and/or skewness. It is worth noting that this kind 

of approach is particularly interesting also in the context or remote 

sensing imagery. 

 

Figure 4.  Results of the ID-based supervised feature selection approach 
applied to the whole data set. The features located on the right of Zn do not 

reduce the dissimilarity and are considered irrelevant. 
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