IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

The open discussion version of this paper is available at: Milligan BG. (2017)
Probabilistic graph models for landscape genetics.
Peer]J Preprints 5:€2225v5 https://doi.org/10.7287/peerj.preprints.2225v5

Probabilistic graph models for landscape genetics
Brook G. Milligan'

'Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003 USA

Corresponding author:
Brook G. Milligan!

Email address: brook@nmsu.edu

ABSTRACT

Landscape genetics combines population genetics, landscape ecology, and spatial analysis to
identify landscape and genetic factors that influence genetic and genomic variation. Progress in
the field depends on a strong conceptual foundation and the means of identifying mechanistic
connnections between environmental factors, landscape features, and genetic or genomic variation.
Many existing approaches and much of the software commonly in use was developed for population
genetics or statistics and is not entirely appropriate for landscape genetics. Probabilistic graph
models provide a statistically rigorous and flexible means of constructing models directly applicable
to landscape genetics. Probabilistic graph models also allow construction of mechanistic models,
which are crucial elements in testing hypotheses. Sophisticated software exists for the analysis of
graph models; however, much of it does not handle the types of data used for landscape genetics,
model structures involving autoregressive spatial interaction between variables, or the scale of
landscape genetics problems. Thus, an important priority for the field is to develop suitably flexible
software tools for graph models that overcome these problems and allow landscape geneticists
to explore meaningfully mechanistic and flexible models. We are developing such a library and
applying it to examples in landscape genetics.

Keywords: landscape genetics, population genetics, graph models, Bayesian inference, open
source software, software development

Landscape genetics combines population genetics, landscape ecology, and spatial analysis to
identify the mechanisms by which landscape and environmental factors influence genetic and ge-
nomic variation. From the outset, the field has focused on the twin ecological and evolutionary
processes of gene flow and adaptation (Holderegger et al., 2006; Manel et al., 2003, 2010). Involving
as it does quantification of both genetics and landscapes, landscape genetics is inherently interdisci-
plinary (Balkenhol et al., 2009; Holderegger and Wagner, 2008). While the emphasis is often on
the genetics, explicit consideration of the importance of GIS and allied geospatial disciplines is
crucial as they can contribute to landscape genetics in many ways (Cushman et al., 2016; Storfer
et al., 2007). For example, experimental design in landscape genetics must be informed by such
factors as the spatial extent and grain of available data, and the configuration of landscape features.
Landscape and environmental data are inherently spatial, and must be acquired, organized, and
analyzed in the course of a landscape genetics study. Thus, geoscientists and geocomputation will
play an increasingly important role in landscape genetics.

Please cite this paper as: Brook G. Milligan (2018) Probabilistic graph models for landscape genetics. In Marchesini I. & Pierleoni A.
(Eds.) Proceedings of the 4th Open Source Geospatial Research and Education Symposium (OGRS2016). Perugia, 12-14 October 2016.
https://doi.org/10.30437/0grs2016_paper_36

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

Progress in landscape genetics is so far limited by available analytical methods (Balkenhol et al.,
2009, 2016a; Guillot et al., 2009). In part this derives from the fact that many of the available
analytical tools and much of the usable software were originally developed for population genetics
or even broader statistical applications. They often include assumptions and are applicable to data
that are not completely appropriate for landscape genetics studies. Because of this gap, there is
no consensus in the literature regarding how to approach landscape genetics analysis (Balkenhol
et al., 2016a). Indeed, the ad hoc assortment of methods currently in use lacks a unifying theory;
consequently, more focus must be given to a mechanistic understanding of the influence of landscapes
and environments on genetic and genomic variation (Balkenhol et al., 2016b). Development of
a more comprehensive theory will come in part from an improved foundation of open source
computational tools allowing explicit and flexible mechanistic modeling.

This brief review focuses on three themes. First, it identifies the types of models most likely to
advance a comprehensive theory of landscape genetics, improve mechanistic understanding, and
provide better predictions serving, for example, conservation policy and management. Second,
it considers a set of open source software that could be used for general models in landscape
genetics but that all have significant limitations. Finally, it also suggests how these limitations can
be overcome with new models and computational tools.

1 LANDSCAPE GENETICS AND BAYESIAN INFERENCE

The prevailing challenge in landscape genetics is identifying the mechanisms by which landscape
and environmental factors influence genetic and genomic variation. More precisely, the central
question is: given data on intraspecific genetic variation across landscapes (or waterscapes; Manel
and Holderegger (2013); Selkoe et al. (2016)), what inferences are possible regarding the functional
mechanisms and factors causing that variation? Framing the question in this way emphasizes the
inherent connection between the science of landscape genetics and the nature of Bayesian inference.

The natural connection between landscape genetics and Bayesian inference has led to the
development of a variety of widely used Bayesian analysis methods. A first set of these includes
STRUCTURE, which identifies putative populations and assigns individuals to them (Pritchard et al.,
2000). Although originally designed for population not landscape genetics, it remains the most
widely used. A second set of Bayesian models applied to landscape genetics includes GENELAND,
which seeks to identify population clusters by modeling allele frequency distributions in a spatially
explicit way (Chen et al., 2007; Guillot et al., 2005a,b). More recently, Bayesian models that
explicitly relate environmental gradients to spatially explicit allele frequency distributions have been
developed (Coop et al., 2010; Frichot et al., 2013).

One element is common to all of the available software: each program implements a narrow
range of possible models and provides very limited opportunity for expanding its scope. For example,
as discussed below, both STRUCTURE and GENELAND are essentially variants of the same model,
yet nothing of their implementation is shared so new variants cannot be created by exploiting their
commonality. Further, the published descriptions do not reveal the inherent similarity between
STRUCTURE and GENELAND, so conceptual connections are not evident. Consequently, landscape
geneticists do not recognize a continuum of possible models. Even worse, they cannot exploit the
continuum by incrementally modifying existing models and competing alternatives against available

265

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

data. This is a serious limitation for a scientific field that repeatedly asserts that more mechanistic
and predictive models and a stronger theoretical foundation are essential (Andrew et al., 2013;
Balkenhol et al., 2016b; Guillot et al., 2009; Manel and Holderegger, 2013).

2 PROBABILISTIC GRAPH MODELS

Mathematical graphs are widely used to represent models, including some in landscape genetics.
Graphs are composed of a set of vertices and a set of edges, each of which connects a pair of vertices.
Edges may be directed or undirected, and paths are sequences of edges connecting one vertex with
another, possibly with intervening vertices. A cyclic graph has at least one path starting and ending
at the same vertex; an acyclic graph lacks any such paths.

One application of graphs to landscape genetics derives from the population graph concept (Dyer
and Nason, 2004). Here the graph is composed of vertices representing population distributions in a
multilocus genetic space, and edges representing interdependencies between populations due, for
example, to gene flow (Excoffier et al., 1992). The primary application to landscape genetics has
been identification of conditional independence between populations to remove edges followed by
analysis of graph structure metrics such as centrality or connnectness (Dyer, 2007; Murphy et al.,
2016).

Graph models can be much richer, however, and both STRUCTURE and GENELAND are examples
used in landscape genetics. Generally, (probabilistic) graph models are composed of vertices
representing any kind of random variable and edges representing dependencies between them
(Bishop, 2006; Koller and Friedman, 2009). They are widely used, for example, in latent factor
analysis (Steyvers and Griffiths, 2007), a field that now finds application broadly in machine learning,
artificial intelligence, and document and image processing, as well as landscape genetics (Blei et al.,
2003; Blei, 2012; Frichot et al., 2013; Jia et al., 2011; Pritchard et al., 2000). The population
graph concept of Dyer and Nason (2004) is clearly a special case where each vertex represents
the same quantity, a population-specific distribution, but the landscape genetics analysis involving
edge removal and graph metrics (Murphy et al., 2016) is unrelated to the use of graphs as formal
probabilistic models (Bishop, 2006; Koller and Friedman, 2009). The value of the latter for landscape
genetics, both conceptually and for software development, is the focus here.

Although not described as such, a probabilistic graph model represents the mathematics underly-
ing STRUCTURE (Pritchard et al., 2000). In this case, the random variables represent population-
specific distributions of alleles, the probabilistic assignment of alleles to populations, and prior
distributions that by default are uninformative (Figure 1). The STRUCTURE software supports slight
variations in the model depicted; for example, assignment of all alleles may be individual-specific
not allele-specific as shown, and priors may be informative in various ways. These variations,
however, are extremely limited and do not cover the continuum of related models that is possible.

One related model, however, is alluded to in Pritchard et al. (2000) and described in detail in
Falush et al. (2003); but again, the graph model itself is not presented explicitly. The main difference
is that in this model the population-specific allele distributions are not independent; instead, they are
correlated via a shared ancestral population (Figure 2).

A further related model, implemented in GENELAND, is described in Guillot et al. (2005a),
again without depicting the graph model (Figure 3). This model explicitly adds spatial information

266

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

to the model; unlike the other two, both the identity of alleles and their spatial location are observed.
This supports estimating additional random variables such as the inferred location of individuals and
spatially-explicit allele distributions.

A comparison of Figures 1-3 makes clear that these are all closely related models, a fact that is
generally not made evident by the papers describing them. Furthermore, in many ways the graph
models are more useful than the papers, because they make the conceptual linkages clear and enable
direct comparisons among them. They also make gaps in the existing models evident; for example,
none of these include gene flow explicitly despite its clear importance as a mechanism in landscape
genetics (Holderegger and Wagner, 2008; Manel and Holderegger, 2013; Storfer et al., 2007; van
Strien et al., 2014). Finally, probabilistic graph models invite the construction of variations by adding
new random variables or changing dependencies among them, because the biological structure of the
models is easy to reason about when presented in the form of a graph. Probabilistic graph models,
therefore, provide an ideal foundation for mechanistic modeling in landscape genetics that can lead
to an improved theoretical understanding.

3 A MECHANISTIC MODELING FRAMEWORK FOR LANDSCAPE GE-
NETICS

Traditional approaches to landscape genetics descriptively model either genetic characteristics
associated with each sampled site or individual, or derived genetic measures associated with pairs
of sampled sites or individuals (Joost et al., 2007). Almost all approaches model these response
variables using ad hoc distributions taken from more generic statistical literature; for example,
virtually the entire textbook on landscape genetics (Balkenhol et al., 2016a) follows this pattern.
In contrast, a mechanistic approach would construct a model of the individual observations, e.g.,
individual multilocus genotypes (or genomes), as a function of assumed demographic, ecological,
and population genetic mechanisms.

As described earlier and illustrated in Figures 1-3, STRUCTURE and GENELAND are examples of
exactly this approach; the observed alleles are modeled directly in terms of unobserved but inferable
populations and assignments (Guillot et al., 2005a; Pritchard et al., 2000). Viewed in this context,
differences between individual- and population-based approaches to landscape genetics are not
fundamental; rather they reduce to simple differences between the structure of the graphical models
in use. Individual-based models have graphs that relate observations on individuals to individual-
specific random variables; examples of the latter are the assignment of an individual’s alleles to
populations (Z in Figures 1 and 3) and the inferred true location of each individual (s in Figure 3).
Population-based models have graphs that relate observations on individuals to population-specific
random variables; examples of the latter are the population-specific allele frequencies (P in Figures 1
and 3). By including elements of each, Figures 1 and 3 already blur the boundary between individual-
and population-specific models.

Given the power of probabilitistic graph models to represent a broad spectrum of intermediate
cases just as well, a better framework is the set of mechanisms included. From this perspective, it is
evident that Figure 3 includes spatially-explicit mechanisms whereas Figure 1 does not. It is also
evident that neither one includes an explicit mechanism for gene flow. The power of probabilitistic
graph models lies in their ability to cover the entire spectrum of models relevant to landscape

267

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

genetics and to encourage more transparent reasoning about alternative models. Using them to
advance landscape genetics is limited only by our ability to compare alternative models, but that in
turn is severely constrained by the software available to manipulate and analyze them.

4 OPEN-SOURCE PROBABILISTIC GRAPH MODELS

As just illustrated, the primary advantages of probabilistic graph models are that complex and
realisticly mechanistic models can be constructed, and that their model structure can be manipulated
easily to explore alternatives. Thus, there is great scope for constructing general theories based upon
manipulating probabilitistic graph models to reflect interesting biological models within landscape
genetics. However, software tools must exist that enable manipulation and analysis of the graphs,
and the types of graphs available must match those required by landscape genetics. For many
applications two types of graphs are enough: Bayesian networks represented by directed acyclic
graphs (DAGs) and Markov random fields represented by undirected graphs. Landscape genetics
models, however, often require more general types of graphs to accommodate, for example, spatially
autoregressive relationships among random variables. Additionally, landscape genetics models often
require distributions appropriate to a broad range of commonly encountered data types, including
alleles, genotypes, spatially explicit environmental data. Such a range of discrete and continuous,
unidimensional and multidimensional data types requires a rich array of probability distributions.

While the set of probabilistic graph models that has been applied to landscape genetics do not
harness their full flexibility, there exist modeling software that does better. The most widely used is
based upon the BUGS language for describing graph models, and includes WinBUGS, OpenBugs
(Lunn et al., 2009) and JAGS (Plummer, 2015). The BUGS language allows textual description
of general graph models that include a broad range of distributions. The textual description is
translated into executable code, a process that introduces some of the limitations common to this
type of modeling software. First, the flexibility of possible applications is limited by the features
of the BUGS language. A limited range of data types, generally scalars and vectors or matrices
constructed from them, is available, only data structures describable in the language may be used,
and algorithms are limited to those already programmed. Second, the scale of models is also limited
by the execution environment provided by the implementation. Despite the inherent flexibility
of graph models in general, both of these limitations are barriers to convenient development of
landscape genetics models that leverage the flexibility of graph models. While genetic data can
be recoded in the form of only integers or real numbers, it is tedious and error-prone to do so;
thus, the limited data types available create needless barriers. A landscape genetics model might
include thousands or millions of random variables within it; consider, for example, a model of
population allele freqencies and environmental factors across a landscape grid of 1000 x 1000 pixels.
This puts severe stress on models that cannot harness the full power of multithreading, distributed
multiprocessing, and careful memory management. Being limited by the BUGS language, these
programs provide restricted capacity for modelers to address these issues.

Another general graph modeling system is Stan (Carpenter et al., 2015; Gelman et al., 2015).
Although more flexible in some ways than BUGS, Stan suffers from some of the same limitations that
reduce its applicability to landscape genetics. It has the same limited data types and the execution
environment is likewise limited by the Stan language. As a result, neither BUGS nor Stan are ideally

268

IV OPEN SOURCE GEOSPATIAL

October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM
Primitive Implementation
Name Graph types variables Preprocessing language Reference
Darwin FGs scalars compiled C++ Gould (2015)
HYDRA DAGs, MRFs, FGs, HMMs Java classes compiled Java Warmes (2013)
Infer NET FGs C# classes compiled C# Minka et al. (2014)
JAGS DAGs scalars interpreted C++ Plummer (2016)
JavaBayes DAGs scalars interpreted Java Cozman (2001)
libDAT FGs discrete compiled C++ Mooiji (2015)
Mocapy++ DAGs, HMMs CH+classes compiled C++ Antonov et al. (2015)
Nimble DAGs scalar interpreted C++ de Valpine et al. (2016)
OpenBUGS DAGs scalar interpreted Component Pascal ~ Thomas (2009)
OpenGM DAGs, MRFs, FGs discrete compiled C++ OpenGM (2015)
PNL DAGs, MRFs C++ classes compiled C++ Sysoyev et al. (2013)
RISO DAGs Java classes compiled Java Dodier (2012)
Stan scalars interpreted C++ Stan Development Team (2016)
Vibes DAGs scalar compiled Java Winn (2004)

Table 1. A selection of open source software tools for analyzing probabilistic graph models. Type
of graphs include directed acyclic graphs (DAGs), Markov random fields (MRFs), factor graphs
(FGs), hidden Markov models (HMMs), and Gaussian Markov models (GMMs).

suited for landscape genetics applications.

In addition to these two major classes of graph modeling software, a broad range of more
specialized software systems is also available; many of these are summarized by Murphy (2014).
Some are open source and may have potential for landscape genetics applications (Table 1). These
tools have many of the same limitations as BUGS, JAGS, and Stan. They often handle fewer graph
types than needed for landscape genetics, the data types are not well suited to landscape genetics, or
their execution environments are restrictive. In addition, they are much more specialized, difficult to
program, and likely well beyond the reach of typical landscape geneticists. These characteristics
mean that landscape geneticists face a fundamental challenge hindering development of a strong
conceptual foundation for the field based upon the expressive power, flexibility, and statistical rigor
of probabilistic graph models.

5 DESIGNING A PROBABILISTIC GRAPH MODEL FOR LANDSCAPE
GENETICS

What then is the ideal design of a software system intended to harness the power, flexibility, and
rigor of probabilistic graph models applied to landscape genetics? First and foremost, it must support
a full range of relevant graph types, which in particular means not being limited to directed acyclic
graphs. Second, it must support a full range of useful data types that landscape geneticists work
with; in addition to simple scalars, vectors, and matrices, these include named alleles and genotypes,
loci and chromosomes, geographic locations, and spatial data of various sorts. Ideally, user-defined
or third-party data types should be easy to accommodate. Third, the algorithms available should be
extensible to allow improved efficiency as needed. Fourth, the execution environment should not
be limited to that encapsulated within a single, predefined program. This is especially important
for landscape genetics models that may well encompass thousands or millions of random variables.
Finally, the power and flexibility of graph models must be abstracted enough that a full spectrum

269

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

of landscape geneticists can create simple models easily, test alternative and biologically relevant
models quickly, and improve upon the models and algorithms as needed.

It is little surprise that existing software tools are unable to meet these stringent demands; they
are largely conflicting and impossible to resolve without advanced software design. The most likely
path forward (Lunn et al., 2009) leverages the power of C++ to present high-level abstractions
based upon embedded domain specific languages (de Guzman and Kaiser, 2017; Niebler, 2017)
assembled with expression templates (Niebler, 2017; Veldhuizen, 1995) from highly reusable generic
components (Stepanov and Rose, 2014). We are following these design principles to implement
a software library, GRAPHMODEL, intended to provide the expressive power and computational
performance demanded for advancing a coherent conceptual foundation for landscape genetics.

Design of any software library must face a fundamental tension between expressive power and
ease of use for a limited set of use cases. For example, a variety of statistical software packages
aim to make a limited range of analyses easy for newcomers, but R (R Core Team, 2017) is gaining
widespread use because it is a Turing-complete language that can express an expansive set of models.
In the case of GRAPHMODEL, we have focused initially on providing a set of generic components
that can be composed flexibly to develop an expansive set of models based upon probabilistic graph
models. Future work will provide increasingly higher levels of abstraction to simplify common use
cases. Note that the alternative of starting at a high level of abstraction, i.e., restricting the graph
models that are possible, is incompatible with the realization described here that probabilistic graph
models are a powerful and natural tool for landscape genetics and other fields.

The outcome of this work is a highly compact way of encoding probabilistic graph models
of relevance to landscape genetics and other fields of science. Given the expressive power of the
language, all of this should be readily accessible to biologists without deep knowledge of C++
programming. Importantly, models can be described in a formal way that removes the ambiguity
inherent in natural language descriptions. Finally, because models are encoded directly in C++,
not interpreted, they can be reused as portions of larger programs for enhanced capability; this
is fundamentally impossible for interpreted modeling frameworks such as OpenBUGS or JAGS.
The generality of this approach removes the limitations inherent to the available software and
characteristic of current approaches to landscape genetics data analysis, and ultimately will make it
easy to encode, and therefore explore, the complete space of relevant models. Some of the features
of the GRAPHMODEL library that make this possible are outlined in the following sections.

Graph model vertices Probabilistic graph models are of course composed of vertices and edges.
Each vertex represents one of several different types of concepts, including scalar and non-scalar
random variables, arbitrary expressions, factors that support calculation of a probability density
function, distributions that support sample generation, and scalar distributions that support calcula-
tion of a cummulative density function. For purposes of supporting Monte Carlo Markov Chains
(MCMCs), it is also useful if random variables can summarize a sequence of their own values. All
of these concepts are encapsulated within the GRAPHMODEL library as a hierarchical set of classes
(Figure 4). Importantly, each type of vertex also models the concepts of a vertex in an incidence
graph as defined by the Boost Graph library (Siek et al., 2002, 2017). Furthermore, other types of
graphs, e.g., a vertex and edge list graph, can be constructed from a set of vertices. As a result,
any appropriate graph algorithm based upon Boost Graph concepts may be used on probabilistic

270

IV OPEN SOURCE GEOSPATIAL

October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM
Implementation

Distribution PDF/CDF Random variate generator
Bernoulli boost/math/distributions/bernoulli.hpp boost/random/bernoulli_distribution.hpp
Beta boost/math/distributions/beta.hpp boost/random/beta_distribution.hpp
Categorical boost/random/discrete_distribution.hpp
Dirichlet boost/math/special _functions/gamma.hpp boost/random/gamma _distribution.hpp
Multinomial boost/math/special_functions/binomial.hpp boost/random/discrete_distribution.hpp
Normal boost/math/distributions/normal.hpp boost/random/normal_distribution.hpp
Uniform boost/math/distributions/uniform.hpp boost/random/uniform_01.hpp

Table 2. Probability distributions. For distributions with scalar support, both the probability density
(PDF) and cummulative density (CDF) functions are implemented; otherwise, only the PDF is
implemented. For all distributions, generation of random variates is implemented. Where
appropriate, these are implemented as wrappers around standard functions available in the
Boost.Math and Boost.Random libraries.

graph models described using the GRAPHMODEL library. This is one of the important abstractions
illustrating the power of a generic library for probabilistic graph models.

Probability distributions At the core, probability distributions are fundamental to any probabilistic
graph model. Any factor, distribution, or scalar distribution vertex in a graph can be associated
with an appropriate probability distribution at run-time. The most important distributions for
landscape genetics are implemented in the GRAPHMODEL library, mostly as simple wrappers
around the corresponding Boost distributions and generators (Table 2). Given the generic nature
of the design, extending the library with new distributions based upon pre-existing mathematical
and statistical libraries is straightforward. For example, the Boost Math library (Agrawal et al.,
2017) implements 33 distinct statistical distributions and the Boost Random library (Maurer, 2017)
implements 28 random number distributions. This represents a rich set of extensions that will be
added to GRAPHMODEL. Other libraries could, of course, be used as the source of additional
distributions.

Expressions Leveraging the power of probabilistic graph models for computational modeling
requires construction of arbitrary expressions that, for example, represent the value of a parameter for
a distribution. In C++, expression templates are a powerful mechanism of representing expression
trees (Niebler, 2017; Veldhuizen, 1995). Although earlier versions used Boost.Proto (Niebler, 2017),
the GRAPHMODEL library currently uses the Yap expression template library (Laine, 2016), because
of its greater power, compactness, and expressiveness. This enables, for example, expressions like

lit (p) + sample(normal_distribution (mean=0, standard_deviation=0.1))

to represent a random walk sampler that generates samples as deviates from the current value of a
random variable p, which might differ each time a sample is generated. Use of template expressions

271

IV OPEN SOURCE GEOSPATIAL

October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM
Name Description
abs () Absolute value
exp () Exponential
log () Logarithm
pow () Power
sgrt () Square root

Table 3. Mathematical functions. These mathematical functions are implemented as expression
templates and therefore can be used as primitives in mathematical expressions.

like this that capture natural mathematical statements as executable computations is one of the
powerful mechanisms for achieving flexibility and generality in the GRAPHMODEL library.

Function expressions One expectation for mathematical expressions is that they include functions
such as 1og () or sgrt (). Mathematical software libraries, of course, provide a rich set of such
functions, but not in a form amenable to expression templates. The GRAPHMODEL library, however,
already implements the most common (Table 3). More importantly, construction of new expressions
for mathematical (or other) functions is straightforward; all that is required is a class that wraps
the mathematical function of interest, a pair of functions for evaluating the function within an
expression tree, and a set of functions that construct the expression from its arguments (Figure 5).
This pattern can be easily repeated to extend the set of mathematical functions available within the
GRAPHMODEL library.

Execution environment The execution environment for any modeling software is crucial, as it often
determines the performance and therefore the set of problems that are feasible to solve. Just as
one design goal for the GRAPHMODEL library is to support arbitrary probabilistic graph models,
another is to avoid any limitations on the execution environment. Two of the performance critical
elements of evaluating a probabilistic graph model are calculating joint probability distributions and
generating an MCMC sample for a potentially large set of random variables. Both of these might
benefit from parallel, asynchronous computation, but especially the latter must be done in a way
that avoids inherent dependencies among random variables. Any practical computation will likely
require mixtures of sequential and asynchronous computations. Further, the choice should be in
the hands of the model developer, not imposed by the execution environment. These design goals
are addressed in the GRAPHMODEL library by allowing run-time definition of the policies used to
evaluate joint probability distributions and generate MCMC samples. By default the policies perform
calculations sequentially and can be ignored for simple models, which are unlikely to benefit from
asynchronous computation. However, alternative policies are possible and the library provides one
based upon the Boost Asynchronous library (Henry, 2015), which contains a wide range of parallel
asynchronous algorithms that go to great lengths to avoid any waiting for task completion. Boost
Asynchronous also provides threadpools that can distribute tasks across a cluster of machines. Thus,
composing applications for distributed asynchronous model computation is also supported with
no modification to the core GRAPHMODEL classes. Furthermore, run-time selection of sequential

272

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

or asynchronous computation may be made at the level of individual random variables or MCMC
generators, which provides great flexibility in the execution environment.

Data sources Any modeling software must interact with a variety of sources of data; indeed, the
generality of probabilistic graph models would be useless unless a diversity of data types can be
associated with random variables or expressions. This flexibility is supported in the GRAPHMODEL
library in several ways. First, all concrete types, including the variate type of random variables, the
result type of expressions, and the probability type for PDF calculations, are template parameters
for all the relevant classes. Therefore, they can be selected arbitrarily by the modeler. For example,
the random_variable class can represent a numerical scalar, a boolean value, a discrete valued
variable, or a vector depending on the variate template argument. Indeed, any type that can participate
in the expressions used in the model is a legitimate source of data, so the library can be extended in
arbitrary ways with user-defined types used as template arguments. Second, external data can be
read from a variety of data sources. One common source of data is from a file containing a dataframe,
one form of which is the traditional tab-delimited file created by spreadsheets or other software. The
GRAPHMODEL library provides support for reading dataframe files and allowing expressions to
reference, not copy, individual elements within a dataframe. For example, the following code reads
a dataframe and creates a reference of type double to the first sample.

auto dataframe = read_dataframe ("dataframe.dat");
auto dataframe_element = make_element<double> (dataframe, 0, "sample");

In the field of landscape genetics, another common source of information is georeferenced raster
or vector files in any of a large number of commonly used formats. The GRAPHMODEL library
includes an interface to the GDAL library (Open Source Geospatial Foundation, 2017), which
includes drivers for 142 raster formats and 84 vector formats. As with dataframes, the provided
interface supports associating expressions with values obtained from a dataset; a random variable
can, for example, represent the elevation at a particular location in space. Finally, because the
GRAPHMODEL library is not a separate language but is a domain-specific language within C++,
the full power of C++ and any possible libraries are available for interacting with data sources.
Arbitrary code or third-party libraries may be used to access data and associate it with random
variables, distributions, or expressions used in a probabilistic graph model.

Probability calculations All computationally efficient representations of real numbers are approxi-
mate and cover a restricted subset. This can be a serious problem when calculating joint probability
distributions, because they often involve products of a very large number of terms. Naive solutions
based upon, for example, native data types can easily result in underflow errors, which are usually
silent yet yield completely erroneous results. The concrete probability type for random variables and
distributions is a template parameter and thus can be selected by the modeler to avoid these problems.
One option provided by the GRAPHMODEL library is a numeric type storing its value internally
on a logarithmic scale, but implementing the normal arithmetic operators (e.g., +, —, *, /, %) and
functions as efficiently as possible. For example, the default lognumeric type (which is a base e
double) and a base 10 £1oat alternative are declared as follows:

using probability_type = lognumeric<>;
using probability_ type = lognumeric<float,base::ten>;

273

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

Another option is to use one of many available arbitrary precision numeric libraries that are readily
available. Because all of the code in the GRAPHMODEL library is generic, any type that implements
arithmetic operators and functions appropriately can be used for probability calculations.

Future development The fundamental design goals focusing on supporting generic and flexible
probabilistic graph models have largely been accomplished in the implementation of the GRAPH-
MODEL library. Arbitrarily complex graph models can be composed, joint probability distributions
calculated, and samples generated from the distribution of random variables. While this already
supports a wide range of applications in landscape genetics and other fields, several important
advances remain for future development. Because the library purposely provides great flexibility and
generality so as not to limit its applicability, it necessarily presents a relatively low level of abstrac-
tion. Thus, an important direction for future development is to provide higher layers of software that
increase the level of abstraction, thereby further increasing the library’s expressiveness. One example
is additional overloading of operators to reduce boilerplate when associating probability distributions
with random variables. A small addition to the library could enable the model of STRUCTURE
to be expressed very compactly (Figure 6), which would also enable biologists to explore related
models easily. A second direction for future development is to expand the range of probability
distributions and mathematical functions that can be used as primitives within expressions. Given the
idiomatic nature of the wrappers, this is a very straightforward task that could rapidly lead to scores
of new distributions and functions. A third direction for future development is to create a variety of
applications aimed at particular classes of models. For example, STRUCTURE and GENELAND could
be reimplemented easily; one benefit would be the large-scale parallelization inherently provided by
the GRAPHMODEL library, something that would require a complete redesign and reimplementation
to add to STRUCTURE or GENELAND.

The value of a generic library is evident in this list of future directions: the fact that each of
these is a straightforward task is a consequence of a solid foundation that can be easily extended in a
variety of different ways. The widespread use of class and function templates, expression templates,
static type safety coupled with run-time type hiding when appropriate, and clear association between
computational components and the concepts of probabilistic graph models has yielded highly flexible
software that can be composed into a variety of models. Reliance on generic programming allows
the library to deduce much about the types in use and combine them correctly.

6 CONCLUSION

Landscape genetics suffers greatly from the absence of an analytical foundation that encourages
development of a mechanistic understanding of the impact of environmental and landscape factors
on genetic and genomic variation (Balkenhol et al., 2016a). This stems in part from the adoption of
software tools and methods originally developed for other purposes. There exist well-established
concepts and statistical approaches associated with probabilitistic graph models that are ideally
suited as the needed foundation for landscape genetics. Unfortunately, the associated software tools
cannot be borrowed directly, because they are limited in ways that do not accommodate the needs of
landscape geneticists. One priority that would directly advance the field and resolve these problems
is the development of probabilistic graph model tools that do apply generally to landscape genetics.
Despite the inherent difficulty of this task, we have developed a suitable library and are beginning to

274

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

apply it to landscape genetics.

7 SUPPLEMENTAL MATERIALS

The source code for the GRAPHMODEL library, version 0.1.2, is available as a supplemental
compressed tar file graph model-0.1.2.tgz.

8 ACKNOWLEDGEMENTS

This paper was improved by comments offered by Stéphane Joost, Olivier Ertz, Jordan Golubov,
Maria del Carmen Mandujano, and Gregory Penn. I am indebted to discussions with Gary Roemer,
who continually presses me to think synthetically about the issues presented here. The U.S. Forest
Service and Department of State both supported projects that motivated the need for probabilistic
graph models in landscape genetics.

REFERENCES

Agrawal, N., Bikineev, A., Bristow, P. A., Holin, H., Guazzone, M., Kormanyos, C., Lalande, B.,
Maddock, J., Murphy, J. W., Rade, J., Sobotta, B., Sewani, G., van den Berg, T., Walker, D., and
Zhang, X. (2017). Math Toolkit 2.5.2. http://www.boost.org/doc/1ibs/1_64_0/
libs/math/doc/html/index.html.

Andrew, R. L., Bernatchez, L., Bonin, A. L., Buerkle, C. A., Carstens, B. C., Emerson, B. C., Garant,
D., Giraud, T., Kane, N. C., Rogers, S. M., Slate, J., Smith, H., Sork, V. L., Stone, G. N., Vines,
T. H., Waits, L., Widmer, A., and Rieseberg, L. H. (2013). A road map for molecular ecology.
Molecular Ecology, 22:2605-2626.

Antonov, L., Paluszewski, M., and Hamelrcyk, T. (2015). Mocapy++. https://sourceforge.
net/projects/mocapy/.

Balkenhol, N., Cushman, S. A., Storfer, A. T., and Waits, L. P., editors (2016a). Landscape genetics:
concepts, methods, applications. Wiley Blackwell, Hoboken, New Jersey.

Balkenhol, N., Cushman, S. A., Waits, L. P,, and Storfer, A. (2016b). Current status, future
opportunities, and remaining challenges in landscape genetics. In Balkenhol, N., Cushman, S. A.,
Storfer, A. T., and Waits, L. P., editors, Landscape genetics: concepts, methods, applications,
chapter 14, pages 247-255. Wiley Blackwell, Hoboken, New Jersey.

Balkenhol, N., Gugerli, F., Cushman, S. A., Waits, L. P., Coulon, A., Arntzen, J. W., Holderegger,
R., Wagner, H. H., and Participants of the Landscape Genetics Research Agenda Workshop 2007
(2009). Identifying future research needs in landscape genetics: where to from here? Landscape
Ecology, 24:455-463.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New York, New York.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55:77-84.

Blei, D. M., Ng, A. Y., and Jordan, M. 1. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993-1022.

Carpenter, B., Lee, D., Gelman, A., Goodrich, B., Guo, J., Hoffman, M., Betancourt, M., Li, P.,
Brubaker, M. A., and Riddell, A. (2015). Stan: a probabilistic programming language. Journal of
Statistical Software.

275

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

Chen, C., Durand, E., Forbes, F., and Francois, O. (2007). Bayesian clustering algorithms ascertain-
ing spatial population structure: a new computer program and a comparison study. Molecular
Ecology Notes, 7:747-756.

Coop, G., Witonsky, D., Di Rienzo, A., and Pritchard, J. K. (2010). Using environmental correlations
to identify loci underlying local adaptation. Genetics, 185:1411-1423.

Cozman, F. G. (2001). JavaBayes: Bayesian networks in Java. http://www.cs.cmu.edu/
~javabayes/index.html.

Cushman, S. A., McRae, B. H., and McGarigal, K. (2016). Basics of landscape ecology: an
introduction to landscapes and population processes for landscape genetics. In Landscape
Genetics: Concepts, Methods, Applications, chapter 2, pages 11-34. Wiley Blackwell, first
edition.

de Guzman, J. and Kaiser, H. (2017). Spirit 2.5.2. http://www.boost .org/doc/1libs/1_
64_0/1ibs/spirit/doc/html/index.html.

de Valpine, P, Turek, D., Paciorek, C., Temple Lang, D., and Bodik, R.
(2016). Nimble: numerical inference for hierarchical models using Bayesian
and likelihood estimation. https://bids.berkeley.edu/research/
ninble-nurerical —inference-hierarchical-model s-using—layesian—and-1ikel ihcod-estimation

Dodier, R. (2012). RISO: distributed belief networks. https://sourceforge.net/
projects/riso/.

Dyer, R. J. (2007). The evolution of genetic topologies. Theoretical Population Biology, 71:71-79.

Dyer, R. J. and Nason, J. D. (2004). Population graphs: the graph theoretic shape of genetic structure.
Molecular Ecology, 13:1713-1727.

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from
metric distances among DNA haplotypes: application to human mitochondrial DNA restriction
data. Genetics, 131:479-491.

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using
multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164:1567-1587.

Frichot, E., Schoville, S. D., Bouchard, G., and Francois, O. (2013). Testing for associations
between loci and environmental gradients using latent factor mixed models. Molecular Biology
and Evolution, 30:1687-1699.

Gelman, A., Lee, D., and Guo, J. (2015). Stan: A probabilistic programming language for Bayesian
inference and optimization.

Gould, S. (2015). DARWIN: a framework for machine learning and computer vision research and
development. http://drwn.anu.edu.au.

Guillot, G., Estoup, A., Mortier, F., and Cosson, J. F. (2005a). A spatial statistical model for
landscape genetics. Genetics, 170:1261-1280.

Guillot, G., Leblois, R., Coulon, A., and Frantz, A. C. (2009). Statistical methods in spatial genetics.
Molecular Ecology, 18:4734-4756.

Guillot, G., Mortier, F., and Estoup, A. (2005b). GENELAND: a computer package for landscape
genetics. Molecular Ecology Notes, 5:712-715.

Henry, C. (2015). Boost Asynchronous. http://htmlpreview.github.io/?https://
github.com/henry-ch/asynchronous/blob/master/libs/asynchronous/
doc/asynchronous.html. Note: this library is not yet an official part of Boost.

276

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

Holderegger, R., Kamm, U., and Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: implica-
tions for landscape genetics. Landscape Ecology, 21:797-807.

Holderegger, R. and Wagner, H. H. (2008). Landscape genetics. BioScience, 58:199-207.

Jia, Y., Salzmann, M., and Darrell, T. (2011). Learning cross-modality similarity for multinomial
data. In Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11, pages
2407-2414, Washington, DC. IEEE Computer Society.

Joost, S., Bonin, A., Bruford, M. W., Després, L., Conord, C., Erhardt, G., and Taberlet, P. (2007).
A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape
genomics approach to adaptation. Molecular Ecology, 16:3955-39609.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques.
MIT Press, Cambridge, MA.

Laine, T. Z. (2016). Boost.YAP (proposed). https://tzlaine.github.io/yap/doc/
html/index.html. Note: this library is not yet an official part of Boost.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: evolution, critique
and future directions. Statistics in Medicine, 28:3049-3067.

Manel, S. and Holderegger, R. (2013). Ten years of landscape genetics. Trends in Ecology and
Evolution, 28:614—-621.

Manel, S., Joost, S., Epperson, B. K., Holderegger, R., Storfer, A., Rosenberg, M. S., Scribner,
K. T., Bonin, A., and Fortin, M.-J. (2010). Perspectives on the use of landscape genetics to detect
genetic adaptive variation in the field. Molecular Ecology, 19:3760-3772.

Manel, S., Schwartz, M. K., Luikart, G., and Taberlet, P. (2003). Landscape genetics: combining
landscape ecology and population genetics. Trends in Ecology and Evolution, 18:189—-197.

Maurer, J. (2017). Boost.Random. http://www.boost.org/doc/libs/1_64_0/doc/
html/boost_random.html.

Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A., and Bronskill, J.
(2014). Infer.NET 2.6. http://research.microsoft.com/en-us/um/cambridge/
projects/infernet/default.aspx.

Mooiji, J. (2015). 1ibDAI: a free and open source C++ library for discrete approximate inference in
graphical models. https://staff.fnwi.uva.nl/j.m.mooij/libdai/.

Murphy, K. (2014). Software packages for graphical models. https://www.cs.ubc.ca/
~murphyk/Software/bnsoft.html.

Murphy, M., Dyer, R., and Cushman, S. A. (2016). Graph theory and network models in landscape
genetics. In Balkenhol, N., Cushman, S. A., Storfer, A. T., and Waits, L. P., editors, Landscape
genetics: concepts, methods, applications, chapter 10, pages 165-179. Wiley Blackwell, Hoboken,
New Jersey.

Niebler, E. (2017). Boost.Proto. http://www.boost.org/doc/libs/1_64_0/doc/
html/proto.html.

Open Source Geospatial Foundation (2017). GDAL: Geospatial Data Abstraction Library. http:
//www.gdal.org.

OpenGM (2015). OpenGM. http://hciweb2.iwr.uni-heidelberg.de/opengm/.

Plummer, M. (2015). JAGS version 4.0.0 user manual. Technical report.

Plummer, M. (2016). JAGS. http://mcmc—-jags.sourceforge.net.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using

277

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

multilocus genotype data. Genetics, 155:945-959.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Selkoe, K. A., Scribner, K. T., and Galindo, H. M. (2016). Waterscape genetics—applications of
landscape genetics to rivers, lakes, and seas. In Balkenhol, N., Cushman, S. A., Storfer, A. T.,
and Waits, L. P,, editors, Landscape genetics: concepts, methods, applications, chapter 13, pages
220-246. Wiley Blackwell, Hoboken, New Jersey.

Siek, J., Lee, L.-Q., and Lumsdaine, A. (2002). The Boost Graph Library: user guide and reference
manual. Addison-Wesley.

Siek, J. S., Lee, L.-Q., and Lumsdaine, A. (2017). The Boost Graph library (bgl). http://www.
boost.org/doc/libs/1_64_0/1libs/graph/doc/index.html.

Stan Development Team (2016). The Stan math library, version 2.10.0. http://mc—stan.org.

Stepanov, A. A. and Rose, D. E. (2014). From Mathematics to Generic Programming. Addison-
Wesley, first edition.

Steyvers, M. and Griffiths, T. (2007). Probabilistic topic models. In Landauer, T., McNamara, D.,
Dennis, S., and Kintsch, W., editors, Latent Semantic Analysis: A road to meaning. Laurence
Erlbaum.

Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R.,
Delmelle, E., Vierling, L., and Waits, L. P. (2007). Putting the ‘landscape’ in landscape genetics.
Heredity, 98:128-142.

Sysoyev, A. V., Milch, B., Bradski, G. R., and Dash, D. (2013). Probabilistic networks library.
https://sourceforge.net/projects/openpnl/.

Thomas, A. (2009). OpenBugs. http://www.openbugs.net/w/FrontPage.

van Strien, M. J., Keller, D., Holderegger, R., Ghazoul, J., Kienast, F., and Bolliger, J. (2014).
Landscape genetics as a tool for conservation planning: predicting the effects of landscape change
on gene flow. Ecological Applications, 24:327-339.

Veldhuizen, T. (1995). Expression templates. C++ Report, 7(5):26-31.

Warmes, G. (2013). HYDRA MCMC library. https://sourceforge.net/projects/
hydra-mcmc/.

Winn, J. (2004). Variational inference for Bayesian networks. http://vibes.sourceforge.
net.

278

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

N individuals

M alleles/individual

K populations

Figure 1. Plate notation (Bishop, 2006) for the locus-specific graph model used by STRUCTURE
(Pritchard et al., 2000). Each circle represents a random variable (or a set of them for those enclosed
within boxes) and each arrow represents a dependency of one random variable upon another. This
models N individuals each sampled for M (usually two) alleles. P represents the allele frequency
distribution in each of K populations and Z represents the assignment of alleles to populations. 6 is
the distribution of assignments and o and A are Bayesian priors. The single filled circle indicates
that among these random variables only the alleles have been observed; the rest are inferred (or
fixed in the case of ot and A).

279

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

N individuals

M alleles/individual

K populations

Figure 2. Plate notation for the correlated allele frequency extension (Falush et al., 2003) to the
locus-specific graph model used by STRUCTURE. This models an ancestral population (£4) from
which a correlated set of extant populations (P) have been derived. The pattern of correlation
between populations is governed by F'

280

IV OPEN SOURCE GEOSPATIAL
October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM

N individuals

M alleles/individual

°

m spatial tiles

-

K populations

;

Figure 3. Plate notation for the spatially-explicit extension of STRUCTURE used by GENELAND
(Guillot et al., 2005a,b). Additional random variables include the true (s) and observed (shaded)
locations of sampled individuals and the error (€) between them, and the locations of points defining
the Voronoi tessellation () and their population identity (c). In this case, both the number of
Voronoi cells (m) and the number of populations (K) are random variables.

281

IV OPEN SOURCE GEOSPATIAL

October 12-14 2016, Perugia, Italy RESEARCH & EDUCATIONAL SYMPOSIUM
Scalar
factor
/ s
Factor Distribution dis?rcif)hatrion
Veriox Expression / pdf() sample() cdf()
out_degree() operator() Random S ized
out_edges() eval() \ variable r?ﬁgﬁ; urrslél;fafrlze
variable random
variate() variable
markov_blanket() cdf()

pdf() \ accumulator()
Summarized

random
variable

accumulator()

Figure 4. Conceptual class hierarchy of graph model vertices. Each vertex in a probabilistic graph
model corresponds conceptually to one of these basic concepts. Additionally, the run-time behavior
of the classes can be modified. For example, the specific distribution represented by a vertex can be
modified at run-time by replacing its corresponding strategy.

282

October 12-14 2016, Perugia, Italy

IV OPEN SOURCE GEOSPATIAL

// A class wrapping the log() function provided in the C library
//
template < typename Expression >
class log_function
{
using self = log_function;
public:
template < typename E
, typename = mpl::enable_constructor_t<self,E>
>
explicit log_function (E&& expression)
expression_ (std::forward<E> (expression))
{}
template < typename ... T >
auto operator () (T&& ... t) const
{
using std::log;
return log(expression_ (std::forward<T>(t)...));
}
private:
Expression expression_;

bi

// Evaluate a terminal containing a log_function value

//

template < typename ... T, typename ... Args >

auto transform_expression (expression_terminal<log_function<T...>> expr,
Args&& ... args)

{ return evaluate_terminal (expr,std::forward<Args>(args)...); }

// Evaluate a terminal containing a reference to a log_function

//

template < typename ... T, typename ... Args >

auto transform_expression (expression_terminal<log_function<T...>&> expr,
Argsé&& ... args)

{ return evaluate_terminal (expr,std::forward<Args>(args)...); }

// Construct a log expression function
//
template < typename Wrapper >
auto log (expression_function<Wrapper>&& function)
{
using function_type = expression_function<Wrapper>;
using log_function_type = log_function<function_type>;
return make_expression_function (log_function_type (std::move (function)));

template < typename Expr >
auto log (Expr&& expr)
{ return log(make_expression_function (std::forward<Expr>(expr))); }

template < typename Expression >
auto log (log_function<Expression> const& expr) { return expr; }

template < typename Expression >
auto log (log_function<Expression>&& expr) { return std::move (expr); }

Figure 5. Implementation of the 1og () expression function.

283

RESEARCH & EDUCATIONAL SYMPOSIUM

October 12-14 2016, Perugia, Italy

IV OPEN SOURCE GEOSPATIAL
RESEARCH & EDUCATIONAL SYMPOSIUM

observed_allele_type X;
allele_assignment_type Z;

diriclet_parameter_type alpha;
diriclet_parameter_type lambda;

allele_frequency_type Pr;

for (auto population : populations)
P (population) dirichlet (lambda) ;
for (auto individual : individuals)

{

theta (individual)
for (auto allele :
{
Z (individual,allele)
for (auto population :
Pr (individual)
X (individual,allele)
}

" dirichlet (alpha);
alleles (individual))

populations)

bernoulli (P

individual_admixture_distribution_type theta;
population_allele_frequency_distribution_type P;

multinomial (theta (individual));

+= Z (population, individual)
r (individual,allele));

* P (population);

Figure 6. Compact implementation of the STRUCTURE model with admixture (Pritchard et al.,
2000). This is C++ source code for the probabilistic graph model corrresponding to one of the
models in STRUCTURE. A few additional lines of code transforms this into a model with correlated
allele frequencies (Falush et al., 2003) or one with spatially explicit observations (Guillot et al.,

2005a).

284

