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Abstract — The complex development of geomorphometric 

theory has led to various concepts of land surface curvature 

(LSC), whose compatibility has not yet been systematically 

investigated. The definition, terminology and interpretation 

of LSCs show significant confusion and gaps reflected in 

various applications in geoscience modelling and prediction. 

Here we discuss the present situation, specify basic 

problems, and make initial suggestions for their solution.   

I.  INTRODUCTION  

Land surface curvatures (LSCs) are an important part of 
systems of geomorphometric variables [1]. For long, the 
characterisation of land surface by curvatures of contour line and 
slope line (i.e. plan and profile) was considered sufficient [2-5]. 
During the 1990s came an explosion of new definitions of LSCs. 
The introduction of particular new LSCs (tangential curvature 
[6], flow line curvature [7], and Laplacian as a ‘curvature’ [8]) 
was followed by two attempts to build a system of LSCs. The 
first system used directional derivatives of slope and aspect to 
derive all existing and two new curvatures – changes of slope in 
directions of contour and of slope line [9]. The second system 
draws from differential geometry of surfaces, and includes four 
curvatures long known in geometry (maximal, minimal, mean 
and total) as well as six new curvatures (unsphericity, difference, 
horizontal and vertical excess, total accumulation and total ring) 
[10]. This remains the most compact comprehensive system of 
LSCs and is well represented in three representative books 
devoted to digital terrain analysis [11-13].  

Nevertheless different definitions of LSCs with the same 
name are frequently used in practice: plan and profile curvature 
[5], maximum and minimum curvature [14], mean curvature 
[15], and total curvature [16]. Moreover, further new curvatures 
or curvature-like variables have appear in the literature: 
curvedness [17], transverse and profile terrain curvature [18], 
slope of slope or slope of aspect (e.g. [19]), and a very strange 
variable simple termed ‘curvature’ [20]. GIS packages offer 
dozens of variously termed ‘curvatures’, frequently without 
clearly distinguishing between them. All this is a challenge for 
the geomorphometric community to discuss standardization of 

formal expression, terminology and labelling, elucidating 
systemic relationships and improving the interpretation of LSCs. 
Space here does not permit presentation of our proposals 
synthesizing contemporary knowledge and some new theoretical 
concepts into a new system of definition and interpretation of 
LSCs. Here we focus on the state of the art and outline some 
questions and principles important for the building of such a 
system. Discussion of the interpretation of curvatures in terms of 
attractors of land surface development is an example of a new 
research problem formulated on the basis of our approach.  

II. DEFINITIONS 

LSCs sensu stricto are the subject of this paper: they are local 
field-based geomorphometric variables defined by partial 
derivatives in the differentially small surrounding of a point [1]. 
There are other variables termed as ‘curvature’ that do not meet 
this requirement (e.g. [18, 20]). Two overlapping approaches to 
definition and derivation of LSCs exist. The first uses formulae 
from differential geometry to derive basic geometric curvatures 
defined by the inverted value of an osculating circle [4, 7, 10, 
21]. Curvature of curves and normal curvatures of surface are 
most frequently used. However, the synthesizing concept of 
curvature of curves on surfaces, defining their normal and 
geodesic curvature as well as geodesic torsion (e.g. [22]) has not 
yet been systematically applied in geomorphometry. The second 
approach understands LSCs as 2

nd
 directional derivatives of 

altitude or 1
st
 directional derivatives of slope and aspect [3, 5, 

19]. Some authors show the compatibility of both approaches [9, 
23] but it is not absolute.  

LSCs can be defined exactly by mathematical formulae in 
general or specific form. The most frequent general expression in 
Cartesian coordinates [4, 6, 7, 9, 10, 21] permits the simple 
comparison of particular variables. Specific computational 
expressions, using coefficients of interpolation polynomials [5, 8, 
14, 24], is also frequent. Unifying the expression of all 
investigated LSCs in the Cartesian coordinate system produces 
more than 30 different equations, some of which are similar. 
Deeper understanding of their derivation and interpretation has 
permitted preparation of a new classification system containing 
all generally used LSCs, and expressing interrelationships.  
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Shary [10] proved that three curvatures (mean, unsphericity 
and difference curvature) can be considered as independent 
components of LSC; and seven other geometric curvatures are 
combinations of the three. However, that is only one kind of 
relationship between LSCs. Some LSCs can be defined as slope 
(S) dependent transformations (subforms) of others (e.g. the well-
known relationship between plan contour (p) and tangential 
curvature (t): p = t / sinS), and some curvatures are the same as 
others, but only in specific conditions (we label this ‘imitation’). 
Combination of these various kinds of relationships with 
classification of the mathematical basis of particular curvatures is 
at the core of our suggested new system of LSCs. 

A very frequent problem of LSC definition concerns signs of 
the defining equations. At first sight trivial, this problem (what is 
convex in mathematics, and what on the land surface) has far 
from trivial consequences. To be mathematically correct we 
should term hills as concave and dells as convex. Changing the 
direction of slope gradient permits correct definition 
(geographically as well as mathematically) of basic LSCs [25]: a 
problem remains, however, in definition of maximal and minimal 
curvatures. A simple change of signs is not effective here: 
maximal curvature in the geographical convention is described 
by minimal directional derivatives and vice versa. The biggest 
problem, however, comes from mixing mathematical and 
geographical conventions, as e.g. in [5] and [8] and subsequently 
in further GIS packages. 

Insufficient understanding of LSC definition is reflected also 
in the dimensions attributed to particular LSCs. The dimension 
[m

-1
] is natural for LSCs defined by radius of an osculating circle, 

and for second derivatives of altitude. The latter express change 
of tangent of inclination over unit distance in a given direction. 
Expression of the plan curvature of a curve in [rad.m

-1
] (the 

central angle of a 1 m long circular arch of osculating circle, 
which is equal to the radius of the circle) is also acceptable. 
However, in many application studies dimensions are undeclared 
or poorly declared. 

III. TERMINOLOGY  

Absence of a comprehensive classification system of LSCs 
has led to vagueness in LSC terminology. The same term 
frequently has various meanings: e.g. for plan curvature, four 
GIS packages (ArcGIS, SAGA-GIS, GRASS, MICRODEM) 
give four different results. On the other hand, the same curvature 
has been given different names in different papers: e.g. the 
tangential curvature of [6] and [21] is identical with the 
horizontal curvature of [10]; the profile curvature of [5] is the 
same as the longitudinal curvature of [14], and so on. Moreover 
the majority of terms do not fully express the mathematical basis 
of the specified curvature. Plan curvature is curvature of a 
contour line, i.e. in plan projection. However, rotor, flowline or 

streamline curvature [10, 23, 7] also occur in plan projection 
(‘plan slope line curvature’). But flow or stream lines are 
generally considered as spatial curves that have three various 
measures of curvature, and rotor curvature is most frequently 
understand as curvature of a material rotor. Even less specific is 
the traditional term profile curvature, as we can draw an infinite 
number of profiles through every point on the land surface. The 
worst situation is in many application papers where the bare term 
‘curvature’ is used, or terms such as ‘general’, ‘conventional’ or 
‘standard’ curvature which have no specified definition. This 
generally unsystematic labelling of curvatures provides a 
terminological chaos.     

Systematic terminology and labelling of LSCs should contain 
mathematical meaning yet express functional hierarchy. On 
higher (broader) hierarchical level we can preserve traditional 
terms such as plan and profile curvature, for groups of similar 
curvature; and to specify a subform of the group we can label 
curvature by combining terms of differential geometry with basic 
topographic lines, e.g.: normal contour curvature and geodesic 
contour curvature as subforms of plan curvature. If no geometric 
curvature is adequate, direction of directional derivative and 
name of derived field (eventually also order of derivative) can be 
used: e.g. (2

nd
) contour derivative of altitude is another subform 

of the plan curvature group. This permits systematic 
symbolisation of subforms, e.g. (if c is contour): (kn)c and (kg)c 
for normal and geodesic curvatures of contour; and (if z is 
altitude) zcc for the next subform of plan curvature – second 
derivative of altitude in direction of contour. 

IV. INTERPRETATION 

Interpretation of LSCs is the most important aspect for their 
practical use. About 30 formally defined LSCs are fruitless if we 
lack efficient interpretation of each one. In the great majority of 
application papers, the simplest dynamic interpretation of plan 
and profile curvature is used: plan curvature determines 
divergence and convergence, profile determines acceleration and 
deceleration of mass flows. However, if we have four similar 
curvatures (subforms), that all produce convergence and 
divergence, what is the difference between them? Many authors 
ignore this problem: exceptions are e.g. [10] and [28]. Yet little 
attention is paid to interpretation of Shary’s compound curvatures 
[10] although rare empirical studies confirm their importance [26, 
27]. One exception is [28], showing how profile and tangential 
curvature interact during soil erosion (in the form of mean 
curvature). [29] presents an attempt to show the importance of 
difference curvature for definition of potential energy applicable 
to mass flow on the land surface. This concept can also influence 
appraisal of the importance of various kinds of plan and profile 
curvature. If both are sources of change of energy of gravity 
flows, the possibility of infinite values leads to physical 
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nonsense. As the energy of gravity flows is a finite quantity, 
curvatures reaching infinity for slope extrema (0° or 90°) are not 
suitable measures for dynamic interpretation. 

Reflection of long-term landform evolution is another 
essential aspect of interpretation. Curvatures are commonly used 
in mapping individual landforms, land surface segmentation, and 
classification. However, an a priori concept of the evolutionary 
interpretation of LSC has hardly ever been used. The germ of 
such an interpretation can be found in the concept of elementary 
forms defined by constant values of altitude, slope, aspect and 
curvatures [30]. If a tendency to such uniformity really exists, it 
can be reflected by a concentration of values around zero, in the 
ascending hierarchical order: altitude – slope / aspect – 
curvatures – changes of curvature [31]. Various lines of 
theoretical and empirical evidence show that at least linearity 
(zero plan and profile curvature) is an attractor of landform 
development in many cases. We should consider the possibility 
of interpreting zero values of other LSCs as attractors of 
landscape development. 

Shary’s system of LSCs provides a general classification of 
landforms using LSCs [10]. In the space defined by mean, 
difference and total (Gaussian) curvature projected onto the 
plane, where unsphericity curvature = 0, Shary defined twelve 
main types of landforms (Fig. 1)   

 

Figure 1. Shary’s landform classification. K – total (Gaussian) curvature, (kn)c 
– normal contour (tangential) curvature, (kn)s – normal slope line (profile) 
curvature, kd – difference curvature. Dotted belts represent the special character of 
zones along axes – see Fig. 2. Adapted from [32], and modified. 

From Shary’s statistical hypothesis, there is a 1/12 probability 
of the random appearance of each landform type in Fig. 1 [10]. 
As shown in [32], this is generally valid and differences from the 
statistical hypothesis can be morphogenetically interpreted. 
However, Shary’s assertation that “land form types, for which at 

least one curvature is zero, are extremely rare; as a rule, they are 
related to artefacts in elevation matrices” [32, p. 96] is challenged 
by the elementary forms concept [30]. For this concept, attractors 
of land surface development are on the axes of the Shary’s 
system (Fig. 2). Cases where a curvature exactly achieves zero 
value are very exceptional in reality, but we hypothesize a natural 
tendency to approximate zero values of curvatures: this justifies 
the importance of classifications containing zero [e.g. 4, 6, 33, 
34]. Investigation of any tendency of LSCs to concentrate around 
zero (as executed e.g. in [31]) results from this theoretical 
interpretation of LSCs and is an example of using of deeper 
theoretical knowledge about LSCs in the empiric research. 

 

 

Figure 2. Elementary forms of Minár and Evans [30] positioned in Shary’s 
landform classification. Their position on the axes of Shary’s system indicates that 
zero values of curvatures should be attractors in landform development.  Labelling 
as in Fig. 1. 

V. CONCLUSIONS  

Ongoing confusions in LSC terminology, definitions and 
interpretations provide an impetus to prepare a comprehensive 
system of LSCs, unifying terminology and clearly specifying 
relationships between various types of LSCs. The system should 
be built on Shary’s system of geometric normal curvatures [10], 
but must go further. It can help to ensure identification of every 
LSC used in GIS (with definition equations in general form) and 
in papers (with standardized terminology and labelling).  

The place of any curvature in the system should be 
conditioned not only by clear mathematical definition and 
relationships with other LSCs, but also by a clear interpretational 
potential. To develop physically based interpretation of LSCs as 
both dynamic (influencing distribution of energy on the land 
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surface) and as evolutionary (defining a long term disequilibrium 
or as attractors of land surface development) is the biggest 
challenge for the future. The result can be substitution of recent 
experiments with LSCs which lack a basis in sound theory, by 
theory-driven investigations as is typical for developed sciences.  
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