
 

   

Estimating the spatial distribution of vegetation height and 

ground-level elevation in a mesotidal salt marsh from UAV 

LiDAR-derived point cloud 
 

Daniele Pinton§, Alberto Canestrelli, Christine Angelini, Benjamin Wilkinson, Peter Ifju, Andrew Ortega 
 

University of Florida 

Department of Civil and Coastal Engineering 

1949 Stadium Road, Gainesville, FL, USA 
§ daniele.pinton@ufl.edu 

 

 

Abstract— Salt marshes are transitional wetlands placed between 

ocean and land, which act as natural defenses against coastal 

hazards. The amount of organic and inorganic deposition, which is 

strongly influenced by vegetation characteristics, is one of the main 

drivers for the survival of salt marshes. Vegetation also favors the 

dissipation of wind waves and storm surges. For these reasons, an 

accurate description of canopy characteristics in salt marshes is 

critical for their preservation and management. For this purpose, 

airborne LiDAR (Light Detection And Ranging) has become an 

accessible and cost-efficient tool to map large wetland areas. 

However, the limited horizontal resolution of airborne-derived point 
clouds (~1 m) prevents the direct extraction of ground elevation and 

vegetation height if not coupled with other data sources, such as RGB 

or hyperspectral images. Uncrewed Aerial Vehicles (UAV) have 

become an affordable and cost-efficient tool to map targeted salt 

marshes quickly. Although LiDAR is capable of measuring surface 

elevations, laser penetration is limited in dense salt marsh vegetation. 

The limited ability of the laser to penetrate dense vegetation hinders 

its usefulness for surveying tidal marsh platforms. For UAV-borne 

LiDAR, a reliable method to extract ground elevation and vegetation 

height from high-resolution point clouds is yet not available. Here we 

derive a new formulation for converting the 3D distribution of UAV 

derived points into vegetation height and ground-level elevation 

without the support of other data sources. Our formulation has been 

calibrated on the surveyed vegetation height in a Spartina alterniflora 

marsh in Little Sapelo Island, Georgia, USA, and successfully tested 

on an independent dataset. Our method produces high-resolution 
(40×40 cm2) maps of ground elevation and vegetation height, thus 

capturing the large gradients in the proximity of tidal creeks. 

I.  INTRODUCTION 

The increased interest in wetland health is related to their progressive 

degradation and conversion in open water areas and mudflats. The 
leading causes of these transformations are the human interaction and the 
increasing sea-level rise [1]. As estuarine wetlands, salt marshes are an 
essential environment for many ecological, anthropologic, and economic 

reasons. They protect shorelines from storms, sequester carbon, improve 
water quality, and provide habitat for fisheries [2]–[4]. Salt marshes are 
the result of ecological and physical interactions [5], which requires 
numerical modeling to quantify the connections between hydrodynamic, 
morphological, and environmental processes [6], usually interested by 
non-linear effects. Long term evolution of salt marshes is characterized 
using empirical models. However, short term evolution processes that 
require higher precision are described using physical models [7]. In both 

cases, vegetation plays a central role, mitigating the effect of the 
meteorological agents and modulating the sedimentation and flooding 
patterns in the marsh area [8], [9]. In particular, vegetation influences the 
vertical flow velocity, producing additional frictional forces. These 
forces are mainly based on vegetation characteristics, such as the 
thickness of the vegetation layer that is strongly correlated to the ground-
level elevation. Considering these reasons, an accurate description of 
both ground elevation and vegetation in salt marshes is essential for their 

management and conservation. LiDAR technology has been successfully 
used for many applications in wetlands, such as mapping forested 
wetlands [10] and quantifies the effects of sea-level rise in coastal salt 
meadows [11]. However, Airborne LiDAR data may not provide 
adequate representation of the creek network on the marshes [12], due to 
the low resolution of the surveyed datasets (~1 m). Unmanned Aerial 
Vehicle (UAV) is becoming a standard technology used for numerous 
purposes, such as high-resolution mapping [13], agricultural [14], and 

shoreline surveys [15], as well as for the estimation of vegetation biomass 
[16], [17]. More precise representation of the complex salt marsh 
morphodynamic and biological properties, as the vegetative cover [18] 
can be obtained using UAV-borne LiDAR point clouds, which higher 
resolution (~5 cm), is due to the lower flight altitude and the higher laser 
pulsation frequency. 
The objective of this study is the production of high resolution 
(40×40 cm2) maps of ground elevation and vegetation height using 

UAV-borne LiDAR, to describe the complexity of the tidal network 
crossing the salt marshes. With this goal, we derived a new formulation 
that converts UAV-based LiDAR point clouds into ground-level 
elevation and vegetation height. Our formulation has been calibrated 
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from surveyed height data on a 0.26 km2 Spartina alterniflora salt marsh 
in Little Sapelo Island, Georgia, USA. S. alterniflora is the predominant 
macrophyte in this area [1]. Its stems range from 20 cm to 2 m in height. 
While short S. alterniflora occupies the higher marsh platform with stem 
heights of 0.20–0.60 m, tall Spartina fills the lower marsh and creek 

banks with heights up to 2 m. The results were successfully tested on an 
independent dataset. The determination of more accurate and high-
precision vegetation and topographic characteristics will be beneficial for 
the numerical description of coastal wetlands processes. 

II. METHODS 

A. Measurements 

Field measurements were carried out on the 22nd of November 2019, in 
conjunction with a UAV-LiDAR survey. The data were acquired during 
a low tide event to avoid the effects of the tide on the survey. 
Twenty-seven Ground Control Points (GCPs) were positioned on the 
marsh. Their geographic coordinates were measured to verify the 
accuracy of the acquired LiDAR point cloud. The vertical elevation and 
geographic position data were collected during a high-precision RTK-

GPS survey. Their position was decided to cover the marsh domain 
homogeneously, allowing a proper verification of the accuracy of the 
collected LiDAR point cloud. The GCPs were placed 1 m above the 
ground level to make them visible for the surveying staff and to avoid to 
be covered by the tall vegetation and high tide. 
Sixty-eight 40×40 cm2 plots were randomly set in the study area, and 
their geographic coordinates and vertical elevation were surveyed. The 
spatial distribution of the plots was decided to cover all the marsh domain 

and to collect homogeneously distributed values in the plausible range of 
the measured vegetation height (~0.20-2.00 m). Each plot was located in 
a homogeneous area in terms of elevation and vegetation height. The 
vegetation height was measured, collecting the length of three Spartina 
alterniflora stems. The minimum, the mean and the maximum values of 
vegetation height were recorded. To confirm the measured data, we 
collected RGB images using a field-based tool for measurement, made 
of: (i) a wooden panel at a 45-degree angle to the ground, (ii) a horizontal-
looking Distianert 12 megapixel Trail Camera with 80 m detection range, 

and a 125° field of view, connected to the panel and (iii) a red background 
board with a calibration scale [19]. The elevation and position data were 
collected using an RTK-GPS (Trimble R6 GNSS ±2 cm vertical and 
±1 cm maximum horizontal accuracy) in the Universal Traversal 
Mercator (UTM) WGS84 17N reference system. The elevation data were 
measured with respect to the WGS84 ellipsoid. 
We surveyed the study area with a UAV-borne LiDAR on the 22nd of 
November 2019, during a low tide event, to minimize the effects of the 

tide on LiDAR survey. The LiDAR system used to acquire the data 
employed a Velodyne VLP-16 Puck Lite. This scanner is comprised of 
16 beams and acquires 600,000 points per second by including dual 
returns. The scanner is georeferenced with a Novatel STIM-300 Intertial 
Measurement Unit and GNSS receiver. The GNSS data were post-
processed using a local base station. This local base station data was 
processed using OPUS (https://www.ngs.noaa.gov/OPUS/) to provide an 
accurate solution to enable PPK processing. (Post Processed 

Kinematics). This system is mounted on a DJI M600 airframe, which has 

an average of 20 minute flight time and is capable of flying pre-
programmed waypoint missions. This flight was operated at 40 m 
altitude with 50 m flight line spacing. The acquired point cloud has an 
average density of ~500 points/m2. 
To maximize the accuracy in vegetation and ground-level elevation 

description, the acquired point cloud was filtered by applying two cut-off 
filters, removing: (i) the points with an elevation higher than 2.50 m 
above the MSL and lower than 1.20 m below the MSL, that describe the 
freshwater forest placed at the north-western boundary of the domain and 
the surface of the Duplin River, respectively and (ii) the points collected 
outside the study area. Both filters were performed using the 
CloudCompare software. 

B. Parameters estimation 

Once filtered, LiDAR data were associated with the RTK-GPS data and 
the vegetation heights surveyed in the marsh, to define possible relations. 
Sixty-eight smaller point clouds were extracted and analyzed in the 
neighborhood of each surveyed plot. To calculate the ground-level 
elevation, the domain area and the LiDAR dataset were divided into 

0.40 m × 0.40 m cells, using a 2737×1379 grid, whose gridlines were 
oriented in the North and East directions. Each cell location was 
identified by two indexes, (n) and (e) (north and east). The ground level 
in the salt marsh domain was calculated considering the local distribution 
of the minimum elevation values collected by the UAV-based LiDAR in 
a 3x3 cell stencil centered in (n,e), corresponding to a square 
1.20x1.20m2 area (Figure 1). The procedure was implemented based on 
the following assumption: since over the marsh the gradients in ground 
elevation are small, cells larger than 0.4x0.4 m2 have a higher probability 

that at least one laser beam bypasses the vegetation and reaches the 
ground, thus reducing the error in estimating the real ground elevation by 
using the minimum elevation of the point cloud within the cell. The 
effects of the creeks, the holes, and sometimes the adverse impact 
stagnant water can have on the reflected laser beam, inevitably decrease 
the amount of the minimum elevation detected in their proximity using 
the overlying point cloud. To avoid that, we analyzed the distribution of 
the elevation values collected with the point cloud, using the following 

workflow for every (n,e) cell. 

 

Figure 1. 3×3 cell stencil used in the determination of ground level 

elevation. The ground-level elevation in the central cell indicated as (n,e) 

was calculated using the eight surrounding yellow cells. The red dots are the 

minimum elevation values detected in every 0.4×0.4 m2 cell. The black dots 

are the values calculated in the fourth step. The blue central dot is the final 

ground elevation level defined in the stencil. 
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The algorithm developed to describe the ground-level elevation starting 
from the collected point cloud is based on the following steps: 
1. STEP 1: Once the LiDAR dataset was split into (n,e) subsets, 

indicated as PCn,e. 
2. STEP 2: the elevation and the geographic coordinates of the lowest 

point in each (n,e) cell were identified and placed in the cell’s 
centroids (red dots, Figure 1). The minimum elevation value was 
calculated as: 

𝑧min,𝑛,𝑒 = 𝑚𝑖𝑛[ℎ𝑘]               ℎ𝑘  ∈ 𝑃𝐶𝑛,𝑒  (1) 
where hk is the elevation of the k points contained in the PCn,e subset. 

3. STEP 3: For each (n,e) cell, a regression plane was determined 
using the geographic position of the lowest points detected in its 3×3 
cells stencil (red dots in Figure 1). The mean slope of the plane (Sn,e) 
and the vertical range of the nine minimum elevation points (Rn,e) 
for each stencil  were calculated as: 

𝑆𝑛,𝑒 =  (|𝑆𝑛| + |𝑆𝑒|) 2⁄  (2) 

𝑅𝑛,𝑒 = 𝑚𝑎𝑥[𝑧min,𝑖,𝑗] −  𝑚𝑖𝑛[𝑧min, 𝑖,𝑗] 

i = 1,3;   j = 1, 3 
(3) 

where Sn and Se are the slope in the two main directions (east and 
north) of the regression plane of each (n,e) cell. 

4. STEP 4: Two elevation values were attributed to the four vertexes 
of the central cell (black dots in Figure 1) of the 3×3 stencil. These 
values correspond to the minimum and the mean zmin calculated in 

the four cells surrounding each vertex. Two additional regression 
planes were determined from the two calculated datasets. The 
midpoint elevation of the two planes indicated as Meanzmin, and 
Minzmin respectively, were calculated and placed in the middle of the 
3×3 stencil. 

5. STEP 5: The cells close to the creeks were identified using a 
threshold of 0.30 on the slope and 0.30 m on the vertical range, 
calculated as described at STEP 3. The thresholds were chosen, 

analyzing the shape of the point cloud in the proximity of the creeks.  
The ground elevation value (ZG,n,e) of the (n,e) cells was calculated 
as follows: 

{
𝑍𝐺,𝑛,𝑒 =  𝑀𝑒𝑎𝑛𝑧𝑚𝑖𝑛    𝑖𝑓 𝑆𝑛,𝑒 > 0.30 ∪  𝑅𝑛,𝑒 > 0.30 m

𝑍𝐺,𝑛,𝑒 =  𝑀𝑖𝑛𝑧𝑚𝑖𝑛                           otherwise                    
 

(4) 

In the proximity of the creeks, Meanzmin was preferred to Minzmin, 
avoiding the underestimation of the ground level obtained using the 
mean of the minimum values detected in the 3x3 stencil. In the 
marsh platform, where the effect of the ground elevation gradients 
is negligible, Minzmin was preferred to Meanzmin. 

6. STEP 6: A correction on ground level was done as follows: 
𝑍𝐺,𝑛,𝑒 =  𝑚𝑖𝑛[𝑧min,2,2]       𝑖𝑓 𝑚𝑖𝑛[𝑧min, 2,2] < 𝑧𝑚𝑖𝑛,𝑚𝑖𝑛 (5) 

The method allows considering as valid the minimum value 
detected in the central cell when its elevation is lower than the 
values obtained using the two regression planes. 

7. STEP 7: Finally, to remove the effect of the creeks, the hi,j points 
contained in the cells of the 1.20×1.20 m2 stencil were shifted using 
the following procedure, obtaining a modified local point cloud: 

{
ℎ𝑖 ,𝑗 =  ℎ𝑖,𝑗 + 𝑍𝐺,𝑛,𝑒 − 𝑧min, 𝑖,𝑗      𝑖𝑓 𝑧min, 𝑖,𝑗 < 𝑍𝐺,𝑛,𝑒 

ℎ𝑖,𝑗 =  ℎ𝑖 ,𝑗                                       𝑖𝑓  𝑧min, 𝑖,𝑗 > 𝑍𝐺,𝑛,𝑒
 

(6) 

The ground level and a modified point cloud in which we removed the 

effects of high ground-level gradients were obtained, applying the 

procedure to the salt marsh area. The process was done using a MATLAB 

based algorithm. Vegetation height was calculated as the difference 

between the maximum elevation value of the point cloud, and the 

calculated ground level in the 3x3 cell stencil. The reduction of the error 

in the estimation of the ground level decreases the error in the calculation 

of the vegetation height (Figure 2). 

III. RESULTS AND CONCLUSIONS 

An accurate description of ground-level elevation and vegetation 
properties over estuarine wetlands is a crucial and challenging need in 

the safeguard and restoration of these delicate and useful ecosystems. 
Here we introduce a new algorithm for an accurate and high-resolution 
description of salt marshes. 
The results showed in Figure 3 demonstrate as our model describes the 
complex tidal network of the salt marsh, producing high resolution 
(40×40 cm2) maps of ground elevation (Figure 3, top-right) and 
vegetation height (Figure 3, bottom-right), thus capturing the large 
gradients in the proximity of tidal creeks. As illustrated in Figure 2, the 
application of our corrective process considerably reduces the error in the 

ground level estimation. The Mean Absolute Error (MAE) decreased 
from 8.78 cm to 5.34 cm; the Mean Error passed from -8.2 cm to -3.9 cm; 
the Maximum Error lowered from 27.7 cm to 15.2 cm. As shown in 
Figure 2, the correction procedure results essential also to reduce the 
error in vegetation determination. The Mean Error lowered from 15.3 cm 
to 1.2 cm, the MAE changed from 18.0 cm to 11.2 cm, and the Maximum 
Error reduced from 78.3 cm to 34.8 cm. The considerable reduction in 
the determination errors proved the affordability of the developed 

algorithm. The performed regression analysis shows the strong 
relationship between the surveyed vegetation height and the value 
obtained from the LiDAR point cloud, with an R2=0.88 and a 
MAE=1.7 cm. The same agreement was observed between the surveyed 
ground-level elevation and the value obtained from the LiDAR point 
cloud, with an R2=0.87 and a MAE=4.4 cm. The accuracy of the acquired 
UAV-based LiDAR was verified using the GCPs acquired in the salt 
marsh using the GPS-RTK system, obtaining a maximum absolute error 

Figure 2. Displacement of ground level elevation (left) and vegetation height 

(right) Blue and red dots indicate the values obtained before and after the LiDAR 

correction. 
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of +4.4 cm and a mean absolute error of +2.0 cm, which is in agreement 
with the ±2 cm of vertical accuracy of the GPS station. 
We want to underline as this method does not require additional datasets 
to perform the identification of the parameters of interest. We would also 
emphasize that although we have used MATLAB in the all the 

manipulations related to the LiDAR point cloud, our algorithm is readily 
reproducible in every similar source code, and does not require any 
special devices or commercial software. The parameters obtained by the 
model will then be used as a base for a more efficient description of 
wetlands modifications using numerical modeling strategies. 
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Figure 3. Example of spatial distribution of ground-level (top right) 

elevation and vegetation height (bottom right) calculated in a 40x40 m2 area 

(green square, figure left) contained in the considered salt marsh domain (red 

polygon, figure left). Both parameters are displayed in meters. 
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