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Abstract—Appropriate  generalization of digital e levation model 

(DEM) is important for the land surface segmentation. We tested 

some methods of generalization based on irregular triangular 

networks. Based on the theory of an optimal triangle for (land) 

surface representation, suitable methods simplifying triangle 

networks have been identified. The quadric error metrics 

simplification algorithm was used to generalize surface models. It 

belongs to the decimation algorithms developed in computer 

graphics, however the use of it for land surface modeling is rare. 

Suitability of the method for the land surface segmentation was 

evaluated for a variety of models created at different generalization 
levels. Numerical expression of the concentration of the third-order 

parameter values (curvature changes) around zero (K0) was used as 

an indicator of the suitability. The hypothesis that the affinity of 

higher-order variables to a constant value should be significantly 

higher for real land surfaces with elementary forms than for 

mathematical surfaces was confirmed. The resulting K0 values are 

significantly lower in the artificial surface than in the real surface 

model, however only to a threshold limit of generalization. 

I.  INTRODUCTION 

The question of scale and resolution is very important in 
geomorphological mapping. One of the major issues of 
quantitative modeling and analysis of the land surface is filtering 
to denoise, generalize, and decompose DEMs into components of 
different spatial scales [1]. When a coarser analytical scale is 
required, the original finer-resolution DEM needs to be 
generalized or simplified to reduce data redundancy [2].  

A resampling method is one of the most widely used methods 
for DEM generalization, which requires averaging the neighboring 
cells of a high-resolution, square-grid DEM into a series of lower-
resolution data sets. This method will inevitably have a peak-
clipping and valley-filling smoothing effect [3]. Other groups of 
grid-based DEM generalization methods include wavelet 
transform, morphology-based, and drainage-constrained methods, 
each of them with its own difficulties [4]. 

The polynomial least squares fitting method with a changing 
calculation window size was used to generalize gridded data for 
hierarchical land surface segmentation in [5]. In this paper, we 
present the use of generalized triangular irregular networks (TIN) 
with different level of details for the same purpose. TIN allows to 
simplify the detailed model so that the resulting model retains as 
much information about the shape of the modeled surface as 
possible. The spatial structure of the TIN can represents the 
modeled surface very efficiently and yet accurately when designed 
with respect to the shape of the modeled surface.  

Generalization algorithms developed for land surface 
modeling are mostly used to create a TIN model from a regular 
grid. These include traditional, still popular: The Fowler and Little 
algorithm [6], the Very important points algorithm [7], the Drop 
heuristic method [8]. Similarly, other algorithms presented in [9-
12, 4] use various techniques to find the most appropriate 
(important) points for describing the land surface. 

Generalization algorithms based on TIN are more widespread 
outside the land surface modeling domain. They are especially 
widespread in the computer graphics. In contrast to the algorithms 
mentioned above, they primarily focus on the overall shape fidelity 
of the simplified model. [13] evaluated simplification methods in 
computer graphics as mature almost two decades ago. Unlike grid-
based method, TIN-based methods from computer graphics are 
exceptionally used in the land surface modeling. 

II. METHODS 

A. Optimal triangle 

When optimizing the triangle network, we start from the 
theoretical assumption of an optimal triangle. [14] defines an 
optimal triangle whose plane has the same normal as the land 
surface at its centroid. A simpler but sufficiently precise 
description of this relationship will allow the replacement of part 
of the land surface with an osculating paraboloid with a vertex on 
land surface at the triangle centroid: Then it follows from the 
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above condition that the plane of the optimal triangle is parallel to 
the tangent plane of the surface (osculating paraboloid) at the 
triangle centroid (Fig. 1). The intersection of the triangle plane and 
the paraboloid is the same as Dupin indicatrix [15]. Consequently, 
the optimal triangle is one whose centroid lies in the center of the 
intersection conic. This can only be achieved in the case of an 
ellipse. The intersection is a circumscribed ellipse of a triangle 
centered in its centroid, known as the circumscribed Steiner 
ellipse. From the all circumscribed ellipses of the triangle, Steiner 
ellipse has the smallest area. It confirms the desirability of the 
approach. In places where Dupin indicatrix is not an ellipse, the 
condition cannot be fulfilled without deviation. 

 

Figure 1.  Optimal triangle representing land surface. The plane of the triangle 

PiPjPk is parallel to tangential plane of the land surface in the point Pts at the 
triangle centroid Ts. ns, nts – triangle normal and normal to surface at Pts are 

identical. Isolines of height difference between the plane of the triangle and the 
land surface are shown. 

[16] came to the same relationship, he defined the optimum 
ratio of triangle (ρ) replacing the quadratic surface as: 

𝜌 =√
𝜆2
𝜆1

 (1) 

where λ1 and λ2 are eigenvalues of Hessian of elevation function 
z = f(x, y). [17] defines a triangle aspect ratio as the ratio of the 

principal axes of the ellipse with the smallest area that passes 
through the triangle vertices. Although not explicitly s tated, the 
authors deal with the circumscribed Steiner ellipse. 

B. Simplification algorithms 

We have identified simplification methods whose optimization 
conditions are in accordance with the above characteristics. These 
are the quadric error metrics simplification (QEMS) method 
presented in [18] and the memoryless simplification (MS) method 
introduced in [19]. Both methods were developed primarily for 
computer graphics, however they are also suitable for use in terrain 
modeling. [4] directly mention the QEMS method as a method for 
terrain simplifying, although they do not use it. 

Both methods belong to the category of decimation methods. 
They use edge contraction to simplify the model's geometry. When 
contracting an edge, its two end points V0 and V1 are merged into 
a new vertex V. Condition for placing a new vertex is crucial. The 
final model consists of vertices that are not in the original data set. 
It allows to better maintain the local shape and has the ability to 
minimize the impact of random errors  in the input data. The order 
of edges in edge list for contracting is determined by weighting of 
edge contraction. The contraction is repeated until the target 
condition is reached – most often the number of elements in the 
model. 

The QEMS algorithm determines the edge contraction weight 
based on the value of the sum of the quadratic distance of the new 
vertex V from the individual planes of the triangles with the 
original merged vertices V0 and V1. New vertex location is in the 
smallest quadratic distance from the planes of triangles with the 
vertices V0 and V1. An example of one contraction step is shown in 
Fig. 2. In the MS method, the algorithm uses the sum of tetrahedron 
volumes that arise from the surrounding triangles by shifting the 
original vertices V0 and V1 to a new vertex V and an additional 
condition of preserving the volume. 

 

Figure 2.  Edge contraction and new vertex localization in quadric error 

metrics simplification in 2D. 

[17] showed that the aspect ratio, which is based on minimizing 
the quadric error, corresponds to the optimum ratio (1). 
Eigenvalues λ1 and λ2 are the extremes of principal normal 
curvature κ1 and κ2 and thus λ1 = κ1, λ2 = κ2. Extremal curvatures 
κ1 and κ2 correspond to the principal axes of Dupin indicatrix [17]. 
[20] presents that objective function for a new vertex localization 
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in MS bears a great deal of similarity to the quadratic form in the 
QEMS algorithm. The difference is only the weight of the triangle, 
they use squared value and absolute value of triangle area, 
respectively. This confirms that the above approach and so these 
methods use the same characteristics of the optimal triangle. The 
QEMS method we used to generalize the surface models. 

C. Testing triangle networks 

Third-order morphometric variables were used to describe the 
suitability of a triangular network for land surface segmentation. 
Third-order variables may be used for confirmation of land surface 
affinity to constant values of second-order variables, that is a 
precondition of existence elementary forms suitable for 
geomorphological mapping [21]. A quantile-based measure of 
kurtosis (K0) presented in [21] was used as a numerical expression 
of concentration of data around zero 

𝐾0=
𝑥95−𝑥5

𝑥0+5−𝑥0−5
 (2) 

where x̃95 and x̃5 are percentiles representing the spread of the set 
disregarding extreme values and x̃0+5 and x̃0−5 represent the fifth 
percentiles on the right and on the left from the zero value. The 
values of slope line (s) and contour line (c) changes of profile 
curvature (kn)s and tangential curvature (kn)c denoted (kn)ss, (k n)sc, 
(k n)cc, (k n)cs were used. 

We have determined the partial derivatives up to the third order 
for each vertex (except borders) and triangle centroids of the 
optimized triangular network based on the fourth order polynomial 
least square fitting. The input to the least square fitting were 3-ring 
neighborhood vertices. We calculated the summary characteristic 
K0 from the determined (kn)ss, (k n)sc, (k n)cc, (k n)cs values. This 
calculation was performed repeatedly for generalized models at 
different degrees of generalization. 

[21] presents the hypothesis: The affinity of higher-order 
variables to a constant value should be significantly higher for real 
land surfaces with elementary forms or other structures than for 
mathematical surfaces. To confirm this, the same calculation of K0 
was made on generalized models of the artificial surface. 

III. RESULTS AND DISCUSSION 

The basic DEM of the surveyed area was created from a 
photogrammetric mapping in the form of a grid of 166×163 
(27058) cells with a resolution of 2 meters. It represents an area 
located on the west of Bratislava, Slovakia, around the hill of 
Slovinec. The artificial surface model was calculated for 241×241 
(58081) points based on a mathematical formula (trigonometric 
polynomial) with a fictitious 5 meters resolution. 

The nodes of the regular grids form the vertices of the initial 
triangular networks. Initial TIN was generalized to more than 100 

levels up to last 30 (40 in artificial surface) triangular faces.  The 

selected generalization levels of the models are shown in fig. 3 
and 4. The ability of the algorithm to capture the most important 
surface shapes with a very small number of elements is evident.  

 

Figure 3.  Examples of generalized models of Slovinec: a) initial model (53460 

triangles), b) 5000 triangles, c) 1000 triangles d) 100 triangles. 

 

 

Figure 4. Examples of generalized artificial surface models: a) initial model 

(115200 triangles), b) 5000 triangles, c) 1000 triangles d) 100 triangles.  

The calculated values of K0 from the set of changes of curvature 
(k n)ss, (k n)sc, (k n)cc, (k n)cs in each model are shown in fig. 5.  
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Figure 5. Values of K0 for each types of curvature changes in the whole range 
of generalization.  

The artificial surface has much lower values of K0 up to 
generalization 100 – 200 triangles excluding (k n)cc (~700 
triangles). It points to existence of elementary forms with affinity 

to constant value of (k n)s and (k n)c and/or their parent variables – 
slope, aspect and altitude. Generalizations with < 200 triangles 
make artificial and natural surface equal in light of K0. Instability 

of moment based K0 (strong dependence on random values) for 
small datasets can be one reason. An artificial facets (surface of 

particular big triangles) is another possible reason of convergence 
and extremums of both (artificial and natural) K0 curves. 

IV. CONCLUSIONS 

The optimization of triangular network by QEMS method 
(used nearly exclusively in computer graphics till now) can be 
effectively used for generalization of DEM. K0 index can be 

suitable for determination of generalization levels optimal for 
land surface segmentation only to a certain level of generalization, 

given by approach of K0 curves of artificial and natural surface.  
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